Suppr超能文献

使用气体剂对肺部进行功能成像。

Functional imaging of the lungs with gas agents.

作者信息

Kruger Stanley J, Nagle Scott K, Couch Marcus J, Ohno Yoshiharu, Albert Mitchell, Fain Sean B

机构信息

Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA.

Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA.

出版信息

J Magn Reson Imaging. 2016 Feb;43(2):295-315. doi: 10.1002/jmri.25002. Epub 2015 Jul 27.

Abstract

This review focuses on the state-of-the-art of the three major classes of gas contrast agents used in magnetic resonance imaging (MRI)-hyperpolarized (HP) gas, molecular oxygen, and fluorinated gas--and their application to clinical pulmonary research. During the past several years there has been accelerated development of pulmonary MRI. This has been driven in part by concerns regarding ionizing radiation using multidetector computed tomography (CT). However, MRI also offers capabilities for fast multispectral and functional imaging using gas agents that are not technically feasible with CT. Recent improvements in gradient performance and radial acquisition methods using ultrashort echo time (UTE) have contributed to advances in these functional pulmonary MRI techniques. The relative strengths and weaknesses of the main functional imaging methods and gas agents are compared and applications to measures of ventilation, diffusion, and gas exchange are presented. Functional lung MRI methods using these gas agents are improving our understanding of a wide range of chronic lung diseases, including chronic obstructive pulmonary disease, asthma, and cystic fibrosis in both adults and children.

摘要

本综述聚焦于磁共振成像(MRI)中使用的三大类气体对比剂的最新技术——超极化(HP)气体、分子氧和氟化气体——及其在临床肺部研究中的应用。在过去几年中,肺部MRI发展加速。这部分是由对使用多探测器计算机断层扫描(CT)的电离辐射的担忧所推动的。然而,MRI还提供了使用气体造影剂进行快速多光谱和功能成像的能力,而这在CT技术上是不可行的。梯度性能的最新改进以及使用超短回波时间(UTE)的径向采集方法推动了这些功能性肺部MRI技术的进步。比较了主要功能成像方法和气体造影剂的相对优缺点,并介绍了它们在通气、扩散和气体交换测量中的应用。使用这些气体造影剂的功能性肺部MRI方法正在增进我们对多种慢性肺部疾病的理解,包括成人和儿童的慢性阻塞性肺疾病、哮喘和囊性纤维化。

相似文献

1
Functional imaging of the lungs with gas agents.
J Magn Reson Imaging. 2016 Feb;43(2):295-315. doi: 10.1002/jmri.25002. Epub 2015 Jul 27.
2
Outracing Lung Signal Decay - Potential of Ultrashort Echo Time MRI.
Rofo. 2019 May;191(5):415-423. doi: 10.1055/a-0715-2246. Epub 2018 Sep 26.
3
F MRI of the Lungs Using Inert Fluorinated Gases: Challenges and New Developments.
J Magn Reson Imaging. 2019 Feb;49(2):343-354. doi: 10.1002/jmri.26292. Epub 2018 Sep 24.
4
Hyperpolarized gas and oxygen-enhanced magnetic resonance imaging.
Methods Mol Med. 2006;124:325-45. doi: 10.1385/1-59745-010-3:323.
5
Development of hyperpolarized noble gas MRI.
Nucl Instrum Methods Phys Res A. 1998;402:441-53. doi: 10.1016/s0168-9002(97)00888-7.
6
[Hyperpolarized (3)helium gas for functional magnetic resonance imaging of the lung].
Med Klin (Munich). 2005 Jul 15;100(7):413-24. doi: 10.1007/s00063-005-1048-7.
7
Functional lung imaging using hyperpolarized gas MRI.
J Magn Reson Imaging. 2007 May;25(5):910-23. doi: 10.1002/jmri.20876.
8
Pulmonary hyperpolarized noble gas MRI: recent advances and perspectives in clinical application.
Eur J Radiol. 2014 Jul;83(7):1282-1291. doi: 10.1016/j.ejrad.2014.04.014. Epub 2014 Apr 30.
9
Translational applications of hyperpolarized 3He and 129Xe.
NMR Biomed. 2014 Dec;27(12):1429-38. doi: 10.1002/nbm.3151. Epub 2014 Jun 23.
10
Inert fluorinated gas MRI: a new pulmonary imaging modality.
NMR Biomed. 2014 Dec;27(12):1525-34. doi: 10.1002/nbm.3165. Epub 2014 Jul 26.

引用本文的文献

2
Advances in CT-based lung function imaging for thoracic radiotherapy.
Front Oncol. 2024 Sep 2;14:1414337. doi: 10.3389/fonc.2024.1414337. eCollection 2024.
3
Red Blood Cell Storage with Xenon: Safe or Disruption?
Cells. 2024 Feb 27;13(5):411. doi: 10.3390/cells13050411.
6
Revealing a Third Dissolved-Phase Xenon-129 Resonance in Blood Caused by Hemoglobin Glycation.
Int J Mol Sci. 2023 Jul 11;24(14):11311. doi: 10.3390/ijms241411311.
7
Imaging Regional Airway Involvement of Asthma: Heterogeneity in Ventilation, Mucus Plugs and Remodeling.
Adv Exp Med Biol. 2023;1426:163-184. doi: 10.1007/978-3-031-32259-4_8.
8
Comparison of ventilation defects quantified by Technegas SPECT and hyperpolarized Xe MRI.
Front Physiol. 2023 Apr 28;14:1133334. doi: 10.3389/fphys.2023.1133334. eCollection 2023.
9
Noninvasive diagnosis of pulmonary hypertension with hyperpolarised Xe magnetic resonance imaging and spectroscopy.
ERJ Open Res. 2022 May 16;8(2). doi: 10.1183/23120541.00035-2022. eCollection 2022 Apr.

本文引用的文献

3
Phenotype of asthmatics with increased airway S-nitrosoglutathione reductase activity.
Eur Respir J. 2015 Jan;45(1):87-97. doi: 10.1183/09031936.00042414. Epub 2014 Oct 30.
5
Reply: Cumulative radiation exposure to abdominal organs in patients with cystic fibrosis should not be forgotten.
Am J Respir Crit Care Med. 2014 Oct 15;190(8):962. doi: 10.1164/rccm.201407-1325LE.
6
Extending semiautomatic ventilation defect analysis for hyperpolarized (129)Xe ventilation MRI.
Acad Radiol. 2014 Dec;21(12):1530-41. doi: 10.1016/j.acra.2014.07.017. Epub 2014 Sep 26.
7
Lung ventilation volumetry with same-breath acquisition of hyperpolarized gas and proton MRI.
NMR Biomed. 2014 Dec;27(12):1461-7. doi: 10.1002/nbm.3187. Epub 2014 Sep 10.
9
Differences in hyperpolarized (3) He ventilation imaging after 4 years in adults with cystic fibrosis.
J Magn Reson Imaging. 2015 Jun;41(6):1701-7. doi: 10.1002/jmri.24744. Epub 2014 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验