Suppr超能文献

在多变量数量遗传学混合模型中搜索递归因果结构。

Searching for recursive causal structures in multivariate quantitative genetics mixed models.

机构信息

Department of Animal Sciences, Federal University of Minas Gerais, Belo Horizonte, MG 30123-970, Brazil.

出版信息

Genetics. 2010 Jun;185(2):633-44. doi: 10.1534/genetics.109.112979. Epub 2010 Mar 29.

Abstract

Biology is characterized by complex interactions between phenotypes, such as recursive and simultaneous relationships between substrates and enzymes in biochemical systems. Structural equation models (SEMs) can be used to study such relationships in multivariate analyses, e.g., with multiple traits in a quantitative genetics context. Nonetheless, the number of different recursive causal structures that can be used for fitting a SEM to multivariate data can be huge, even when only a few traits are considered. In recent applications of SEMs in mixed-model quantitative genetics settings, causal structures were preselected on the basis of prior biological knowledge alone. Therefore, the wide range of possible causal structures has not been properly explored. Alternatively, causal structure spaces can be explored using algorithms that, using data-driven evidence, can search for structures that are compatible with the joint distribution of the variables under study. However, the search cannot be performed directly on the joint distribution of the phenotypes as it is possibly confounded by genetic covariance among traits. In this article we propose to search for recursive causal structures among phenotypes using the inductive causation (IC) algorithm after adjusting the data for genetic effects. A standard multiple-trait model is fitted using Bayesian methods to obtain a posterior covariance matrix of phenotypes conditional to unobservable additive genetic effects, which is then used as input for the IC algorithm. As an illustrative example, the proposed methodology was applied to simulated data related to multiple traits measured on a set of inbred lines.

摘要

生物学的特点是表型之间存在复杂的相互作用,例如生化系统中底物和酶之间的递归和同时关系。结构方程模型(SEM)可用于在多元分析中研究此类关系,例如在定量遗传学背景下具有多个性状。尽管如此,即使只考虑少数几个性状,用于将 SEM 拟合到多元数据的递归因果结构的数量也可能非常庞大。在 SEM 在混合模型定量遗传学设置中的最近应用中,因果结构仅基于先前的生物学知识进行了预选。因此,尚未适当探索广泛的可能因果结构。或者,可以使用算法来探索因果结构空间,该算法使用数据驱动的证据,可以搜索与所研究变量的联合分布兼容的结构。但是,由于性状之间的遗传协方差,不能直接在表型的联合分布上进行搜索。在本文中,我们建议在调整数据以适应遗传效应后,使用归纳因果(IC)算法在表型之间搜索递归因果结构。使用贝叶斯方法拟合标准的多性状模型,以获得条件于不可观测的加性遗传效应的表型后验协方差矩阵,然后将其用作 IC 算法的输入。作为说明性示例,将所提出的方法应用于与一组近交系上测量的多个性状相关的模拟数据。

相似文献

1
Searching for recursive causal structures in multivariate quantitative genetics mixed models.
Genetics. 2010 Jun;185(2):633-44. doi: 10.1534/genetics.109.112979. Epub 2010 Mar 29.
2
3
Application of Bayesian causal inference and structural equation model to animal breeding.
Anim Sci J. 2020 Jan-Dec;91(1):e13359. doi: 10.1111/asj.13359.
6
Exploring causal networks of bovine milk fatty acids in a multivariate mixed model context.
Genet Sel Evol. 2014 Jan 17;46(1):2. doi: 10.1186/1297-9686-46-2.
9
Is structural equation modeling advantageous for the genetic improvement of multiple traits?
Genetics. 2013 Jul;194(3):561-72. doi: 10.1534/genetics.113.151209. Epub 2013 Apr 22.
10

引用本文的文献

1
Bayesian Recursive and Structural Equation Models to Infer Causal Links Among Gait Visual Scores on Campolina Horses.
J Anim Breed Genet. 2025 Sep;142(5):463-477. doi: 10.1111/jbg.12919. Epub 2024 Dec 19.
2
Dissecting the effect of heat stress on durum wheat under field conditions.
Front Plant Sci. 2024 Jun 28;15:1393349. doi: 10.3389/fpls.2024.1393349. eCollection 2024.
5
Causal Structural Learning on MPHIA Individual Dataset.
J Am Stat Assoc. 2022;117(540):1642-1655. doi: 10.1080/01621459.2022.2077209. Epub 2022 Jul 7.
6
A generalised approach to the study and understanding of adaptive evolution.
Biol Rev Camb Philos Soc. 2023 Feb;98(1):352-375. doi: 10.1111/brv.12910. Epub 2022 Oct 12.
7
Analysis of the causal structure of traits involved in sow lactation feed efficiency.
Genet Sel Evol. 2022 Jul 26;54(1):53. doi: 10.1186/s12711-022-00744-4.
8
Multi-trait and multi-environment Bayesian analysis to predict the G x E interaction in flood-irrigated rice.
PLoS One. 2022 May 3;17(5):e0259607. doi: 10.1371/journal.pone.0259607. eCollection 2022.

本文引用的文献

1
Stochastic relaxation, gibbs distributions, and the bayesian restoration of images.
IEEE Trans Pattern Anal Mach Intell. 1984 Jun;6(6):721-41. doi: 10.1109/tpami.1984.4767596.
4
Exploring biological relationships between calving traits in primiparous cattle with a Bayesian recursive model.
Genetics. 2009 Jan;181(1):277-87. doi: 10.1534/genetics.108.094888. Epub 2008 Nov 3.
5
Exploratory path analysis with applications in ecology and evolution.
Am Nat. 1997 Jun;149(6):1113-38. doi: 10.1086/286041.
6
Inferring causal phenotype networks from segregating populations.
Genetics. 2008 Jun;179(2):1089-100. doi: 10.1534/genetics.107.085167. Epub 2008 May 27.
7
Using genetic markers to orient the edges in quantitative trait networks: the NEO software.
BMC Syst Biol. 2008 Apr 15;2:34. doi: 10.1186/1752-0509-2-34.
8
Gene network inference via structural equation modeling in genetical genomics experiments.
Genetics. 2008 Mar;178(3):1763-76. doi: 10.1534/genetics.107.080069. Epub 2008 Feb 3.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验