Linacre John M
University of Sydney, Australia.
J Appl Meas. 2010;11(1):1-10.
There is a growing family of Rasch models for polytomous observations. Selecting a suitable model for an existing dataset, estimating its parameters and evaluating its fit is now routine. Problems arise when the model parameters are to be estimated from the current data, but used to predict future data. In particular, ambiguities in the nature of the current data, or overfit of the model to the current dataset, may mean that better fit to the current data may lead to worse fit to future data. The predictive power of several Rasch and Rasch-related models are discussed in the context of the Netflix Prize. Rasch-related models are proposed based on Singular Value Decomposition (SVD) and Boltzmann Machines.
对于多分类观测,Rasch模型的种类越来越多。为现有数据集选择合适的模型、估计其参数并评估其拟合度现在已成为常规操作。当要从当前数据估计模型参数,但用于预测未来数据时,问题就出现了。特别是,当前数据性质的模糊性,或模型对当前数据集的过度拟合,可能意味着对当前数据的更好拟合可能导致对未来数据的更差拟合。在Netflix奖的背景下讨论了几种Rasch模型和与Rasch相关模型的预测能力。基于奇异值分解(SVD)和玻尔兹曼机提出了与Rasch相关的模型。