Batal Iyad, Sacchi Lucia, Bellazzi Riccardo, Hauskrecht Milos
Department of Computer Science, University of Pittsburgh, PA, USA.
AMIA Annu Symp Proc. 2009 Nov 14;2009:29-33.
The increasing availability of complex temporal clinical records collected today has prompted the development of new methods that extend classical machine learning and data mining approaches to time series data. In this work, we develop a new framework for classifying the patient's time-series data based on temporal abstractions. The proposed STF-Mine algorithm automatically mines discriminative temporal abstraction patterns from the data and uses them to learn a classification model. We apply our approach to predict HPF4 test orders from electronic patient health records. This test is often prescribed when the patient is at the risk of Heparin induced thrombocytopenia (HIT). Our results demonstrate the benefit of our approach in learning accurate time series classifiers, a key step in the development of intelligent clinical monitoring systems.
如今,复杂的时间序列临床记录越来越容易获取,这促使了新方法的发展,这些方法将经典的机器学习和数据挖掘方法扩展到时间序列数据。在这项工作中,我们开发了一个基于时间抽象对患者时间序列数据进行分类的新框架。所提出的STF-Mine算法会自动从数据中挖掘有区分性的时间抽象模式,并使用它们来学习分类模型。我们将我们的方法应用于从电子患者健康记录中预测HPF4测试订单。当患者有肝素诱导的血小板减少症(HIT)风险时,通常会开出这项测试。我们的结果证明了我们的方法在学习准确的时间序列分类器方面的优势,这是智能临床监测系统开发中的关键一步。