Batal Iyad, Hauskrecht Milos
Department of Computer Science, University of Pittsburgh.
AMIA Annu Symp Proc. 2010 Nov 13;2010:31-5.
Modern hospitals and health-care institutes collect huge amounts of clinical data. Those who deal with such data know that there is a widening gap between data collection and data comprehension. Thus, it is very important to develop data mining techniques capable of automatically extracting useful knowledge to support clinical decision-making in various diagnostic and patient-management tasks. In this paper, we develop a new framework for rule mining based on minimal predictive rules (MPR). Our goal is to minimize the number of rules in order to reduce the information overhead, while preserving and concisely describing the important underlying patterns. We develop an algorithm to efficiently mine these MPRs and apply it to predict Heparin Platelet Factor 4 antibody (HPF4) test orders from electronic health records.
现代医院和医疗保健机构收集了大量的临床数据。处理这些数据的人都知道,数据收集和数据理解之间的差距正在不断扩大。因此,开发能够自动提取有用知识以支持各种诊断和患者管理任务中的临床决策的数据挖掘技术非常重要。在本文中,我们基于最小预测规则(MPR)开发了一种新的规则挖掘框架。我们的目标是尽量减少规则数量,以减少信息负担,同时保留并简洁地描述重要的潜在模式。我们开发了一种算法来高效地挖掘这些MPR,并将其应用于从电子健康记录中预测肝素血小板因子4抗体(HPF4)检测订单。