Caballero Karla, Akella Ram
University of California Santa Cruz, 1156 High Street Santa Cruz CA, USA.
University of California Santa Cruz, 1156 High Street Santa Cruz CA, USA; University of California Berkeley, 94720 Berkeley CA, USA.
AMIA Annu Symp Proc. 2015 Nov 5;2015:1831-40. eCollection 2015.
In this paper, we propose a framework to dynamically estimate the probability that a patient is readmitted after he is discharged from the ICU and transferred to a lower level care. We model this probability as a latent state which evolves over time using Dynamical Linear Models (DLM). We use as an input a combination of numerical and text features obtained from the patient Electronic Medical Records (EMRs). We process the text from the EMRs to capture different diseases, symptoms and treatments by means of noun phrases and ontologies. We also capture the global context of each text entry using Statistical Topic Models. We fill out the missing values using a Expectation Maximization based method (EM). Experimental results show that our method outperforms other methods in the literature terms of AUC, sensitivity and specificity. In addition, we show that the combination of different features (numerical and text) increases the prediction performance of the proposed approach.
在本文中,我们提出了一个框架,用于动态估计患者从重症监护病房(ICU)出院并转至较低护理级别后再次入院的概率。我们将此概率建模为一个潜在状态,该状态使用动态线性模型(DLM)随时间演变。我们将从患者电子病历(EMR)中获取的数值特征和文本特征相结合作为输入。我们通过名词短语和本体对电子病历中的文本进行处理,以捕捉不同的疾病、症状和治疗方法。我们还使用统计主题模型来捕捉每个文本条目的全局上下文。我们使用基于期望最大化的方法(EM)来填充缺失值。实验结果表明,我们的方法在AUC、敏感性和特异性方面优于文献中的其他方法。此外,我们表明不同特征(数值和文本)的组合提高了所提方法的预测性能。