Suppr超能文献

使用电子病历动态估计患者再次入住重症监护病房的概率

Dynamic Estimation of the Probability of Patient Readmission to the ICU using Electronic Medical Records.

作者信息

Caballero Karla, Akella Ram

机构信息

University of California Santa Cruz, 1156 High Street Santa Cruz CA, USA.

University of California Santa Cruz, 1156 High Street Santa Cruz CA, USA; University of California Berkeley, 94720 Berkeley CA, USA.

出版信息

AMIA Annu Symp Proc. 2015 Nov 5;2015:1831-40. eCollection 2015.

Abstract

In this paper, we propose a framework to dynamically estimate the probability that a patient is readmitted after he is discharged from the ICU and transferred to a lower level care. We model this probability as a latent state which evolves over time using Dynamical Linear Models (DLM). We use as an input a combination of numerical and text features obtained from the patient Electronic Medical Records (EMRs). We process the text from the EMRs to capture different diseases, symptoms and treatments by means of noun phrases and ontologies. We also capture the global context of each text entry using Statistical Topic Models. We fill out the missing values using a Expectation Maximization based method (EM). Experimental results show that our method outperforms other methods in the literature terms of AUC, sensitivity and specificity. In addition, we show that the combination of different features (numerical and text) increases the prediction performance of the proposed approach.

摘要

在本文中,我们提出了一个框架,用于动态估计患者从重症监护病房(ICU)出院并转至较低护理级别后再次入院的概率。我们将此概率建模为一个潜在状态,该状态使用动态线性模型(DLM)随时间演变。我们将从患者电子病历(EMR)中获取的数值特征和文本特征相结合作为输入。我们通过名词短语和本体对电子病历中的文本进行处理,以捕捉不同的疾病、症状和治疗方法。我们还使用统计主题模型来捕捉每个文本条目的全局上下文。我们使用基于期望最大化的方法(EM)来填充缺失值。实验结果表明,我们的方法在AUC、敏感性和特异性方面优于文献中的其他方法。此外,我们表明不同特征(数值和文本)的组合提高了所提方法的预测性能。

相似文献

4
Predicting Hospital Readmission via Cost-Sensitive Deep Learning.基于代价敏感深度学习的住院患者再入院预测。
IEEE/ACM Trans Comput Biol Bioinform. 2018 Nov-Dec;15(6):1968-1978. doi: 10.1109/TCBB.2018.2827029. Epub 2018 Apr 16.
6
Novel Data Imputation for Multiple Types of Missing Data in Intensive Care Units.新型数据插补方法可用于 ICU 中多种类型的缺失数据。
IEEE J Biomed Health Inform. 2019 May;23(3):1243-1250. doi: 10.1109/JBHI.2018.2883606. Epub 2019 Apr 16.

本文引用的文献

5
An overview of MetaMap: historical perspective and recent advances.MetaMap 概述:历史视角与最新进展。
J Am Med Inform Assoc. 2010 May-Jun;17(3):229-36. doi: 10.1136/jamia.2009.002733.
7

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验