Cook Benjamin L, McGuire Thomas G, Meara Ellen, Zaslavsky Alan M
Center for Multicultural Mental Health Research, Cambridge Health Alliance - Harvard Medical School, 120 Beacon Street, 4 floor, Somerville, MA 02143, 617-503-8449.
Health Serv Outcomes Res Methodol. 2009 Mar 1;9(1):1-21. doi: 10.1007/s10742-008-0039-6.
This article compared conceptual and empirical strengths of alternative methods for estimating racial disparities using non-linear models of health care access. Three methods were presented (propensity score, rank and replace, and a combined method) that adjust for health status while allowing SES variables to mediate the relationship between race and access to care. Applying these methods to a nationally representative sample of blacks and non-Hispanic whites surveyed in the 2003 and 2004 Medical Expenditure Panel Surveys (MEPS), we assessed the concordance of each of these methods with the Institute of Medicine (IOM) definition of racial disparities, and empirically compared the methods' predicted disparity estimates, the variance of the estimates, and the sensitivity of the estimates to limitations of available data. The rank and replace and combined methods (but not the propensity score method) are concordant with the IOM definition of racial disparities in that each creates a comparison group with the appropriate marginal distributions of health status and SES variables. Predicted disparities and prediction variances were similar for the rank and replace and combined methods, but the rank and replace method was sensitive to limitations on SES information. For all methods, limiting health status information significantly reduced estimates of disparities compared to a more comprehensive dataset. We conclude that the two IOM-concordant methods were similar enough that either could be considered in disparity predictions. In datasets with limited SES information, the combined method is the better choice.
本文使用医疗保健可及性的非线性模型,比较了估算种族差异的替代方法在概念和实证方面的优势。介绍了三种方法(倾向得分法、排序与替换法以及一种组合方法),这些方法在调整健康状况的同时,允许社会经济地位(SES)变量调节种族与医疗保健可及性之间的关系。将这些方法应用于2003年和2004年医疗支出小组调查(MEPS)中调查的具有全国代表性的黑人和非西班牙裔白人样本,我们评估了每种方法与医学研究所(IOM)对种族差异的定义的一致性,并实证比较了这些方法预测的差异估计值、估计值的方差以及估计值对可用数据局限性的敏感性。排序与替换法和组合方法(但倾向得分法不是)与IOM对种族差异的定义一致,因为每种方法都创建了一个具有适当健康状况和SES变量边际分布的比较组。排序与替换法和组合方法的预测差异和预测方差相似,但排序与替换法对SES信息的局限性敏感。对于所有方法,与更全面的数据集相比,限制健康状况信息会显著降低差异估计值。我们得出结论,两种与IOM一致的方法足够相似,在差异预测中可以考虑使用其中任何一种。在SES信息有限的数据集中,组合方法是更好的选择。