Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
Biochemistry. 2010 May 4;49(17):3766-73. doi: 10.1021/bi100232q.
Despite the enormous success of beta-lactams as broad-spectrum antibacterials, they have never been widely used for the treatment of tuberculosis (TB) due to intrinsic resistance that is caused by the presence of a chromosomally encoded gene (blaC) in Mycobacterium tuberculosis. Our previous studies of TB BlaC revealed that this enzyme is an extremely broad-spectrum beta-lactamase hydrolyzing all beta-lactam classes. Carbapenems are slow substrates that acylate the enzyme but are only slowly deacylated and can therefore act also as potent inhibitors of BlaC. We conducted the in vitro characterization of doripenem and ertapenem with BlaC. A steady-state kinetic burst was observed with both compounds with magnitudes proportional to the concentration of BlaC used. The results provide apparent K(m) and k(cat) values of 0.18 microM and 0.016 min(-1) for doripenem and 0.18 microM and 0.017 min(-1) for ertapenem, respectively. FTICR mass spectrometry demonstrated that the doripenem and ertapenem acyl-enzyme complexes remain stable over a time period of 90 min. The BlaC-doripenem covalent complex obtained after a 90 min soak was determined to 2.2 A, while the BlaC-ertapenem complex obtained after a 90 min soak was determined to 2.0 A. The 1.3 A diffraction data from a 10 min ertapenem-soaked crystal revealed an isomerization occurring in the BlaC-ertapenem adduct in which the original Delta(2)-pyrroline ring was tautomerized to generate the Delta(1)-pyrroline ring. The isomerization leads to the flipping of the carbapenem hydroxyethyl group to hydrogen bond to carboxyl O2 of Glu166. The hydroxyethyl flip results in both the decreased basicity of Glu166 and a significant increase in the distance between carboxyl O2 of Glu166 and the catalytic water molecule, slowing hydrolysis.
尽管β-内酰胺类抗生素作为广谱抗菌药物取得了巨大成功,但由于结核分枝杆菌(Mycobacterium tuberculosis)染色体编码基因(blaC)的存在导致固有耐药性,它们从未被广泛用于结核病(TB)的治疗。我们之前对 TB BlaC 的研究表明,这种酶是一种极其广谱的β-内酰胺酶,可水解所有β-内酰胺类抗生素。碳青霉烯类是缓慢的底物,可酰化酶,但被缓慢去酰化,因此也可以作为 BlaC 的有效抑制剂。我们对多利培南和厄他培南与 BlaC 的体外特性进行了研究。这两种化合物都观察到了稳态动力学爆发,其幅度与使用的 BlaC 浓度成正比。结果分别提供了多利培南和厄他培南的表观 K(m)和 k(cat)值为 0.18 μM 和 0.016 min(-1),以及 0.18 μM 和 0.017 min(-1)。FTICR 质谱证明,多利培南和厄他培南的酰化酶复合物在 90 分钟的时间段内保持稳定。经过 90 分钟浸泡获得的 BlaC-多利培南共价复合物的确定值为 2.2 A,而经过 90 分钟浸泡获得的 BlaC-厄他培南复合物的确定值为 2.0 A。10 分钟厄他培南浸泡晶体的 1.3 A 衍射数据显示,BlaC-厄他培南加合物中发生了异构化,其中原始的 Delta(2)-吡咯啉环被互变异构化为 Delta(1)-吡咯啉环。异构化导致碳青霉烯羟乙基基团翻转,与 Glu166 的羧基 O2 形成氢键。羟乙基翻转导致 Glu166 的碱性降低,同时 Glu166 的羧基 O2 与催化水分子之间的距离显著增加,从而减缓水解。