Suppr超能文献

错配后停滞对非酶核酸复制中错误灾难的影响。

Effect of stalling after mismatches on the error catastrophe in nonenzymatic nucleic acid replication.

机构信息

FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138, USA.

出版信息

J Am Chem Soc. 2010 Apr 28;132(16):5880-5. doi: 10.1021/ja100780p.

Abstract

The frequency of errors during genome replication limits the amount of functionally important information that can be passed on from generation to generation. During the origin of life, mutation rates are thought to have been quite high, raising a classic chicken-and-egg paradox: could nonenzymatic replication propagate sequences accurately enough to allow for the emergence of heritable function? Here we show that the theoretical limit on genomic information content may increase substantially as a consequence of dramatically slowed polymerization after mismatches. As a result of postmismatch stalling, accurate copies of a template tend to be completed more rapidly than mutant copies and the accurate copies can therefore begin a second round of replication more quickly. To quantify this effect, we characterized an experimental model of nonenzymatic, template-directed nucleic acid polymerization. We found that most mismatches decrease the rate of primer extension by more than 2 orders of magnitude relative to a matched (Watson-Crick) control. A chemical replication system with this property would be able to propagate sequences long enough to have function. Our study suggests that the emergence of functional sequences during the origin of life would be possible even in the face of the high intrinsic error rates of chemical replication.

摘要

在基因组复制过程中,错误的频率限制了可以从上一代传递到下一代的功能重要信息的数量。在生命起源时,突变率被认为相当高,这就产生了一个经典的鸡与蛋的悖论:非酶复制能否足够准确地传播序列,从而允许遗传功能的出现?在这里,我们表明,由于错配后聚合作用显著减慢,基因组信息含量的理论限制可能会大大增加。由于错配后停顿,模板的准确拷贝往往比突变拷贝更快地完成,因此准确拷贝可以更快地开始第二轮复制。为了量化这种效果,我们对非酶、模板指导的核酸聚合的实验模型进行了表征。我们发现,与匹配(沃森-克里克)对照相比,大多数错配使引物延伸的速度降低了两个数量级以上。具有这种特性的化学复制系统将能够复制足够长的序列以发挥功能。我们的研究表明,即使在化学复制的固有高错误率的情况下,功能序列在生命起源时的出现也是可能的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b5b/2857888/3967e5099461/ja-2010-00780p_0001.jpg

相似文献

2
Cascade of reduced speed and accuracy after errors in enzyme-free copying of nucleic acid sequences.
J Am Chem Soc. 2013 Jan 9;135(1):354-66. doi: 10.1021/ja3095558. Epub 2012 Dec 21.
4
Structures of mismatch replication errors observed in a DNA polymerase.
Cell. 2004 Mar 19;116(6):803-16. doi: 10.1016/s0092-8674(04)00252-1.
5
The effect of primer-template mismatches on the detection and quantification of nucleic acids using the 5' nuclease assay.
J Mol Diagn. 2010 Jan;12(1):109-17. doi: 10.2353/jmoldx.2010.090035. Epub 2009 Nov 30.
6
Nucleotide-based copying of nucleic acid sequences without enzymes.
J Org Chem. 2013 Feb 1;78(3):793-9. doi: 10.1021/jo3025779. Epub 2013 Jan 17.
8
Replacing uridine with 2-thiouridine enhances the rate and fidelity of nonenzymatic RNA primer extension.
J Am Chem Soc. 2015 Feb 25;137(7):2769-75. doi: 10.1021/jacs.5b00445. Epub 2015 Feb 16.
9
Chemical primer extension: individual steps of spontaneous replication.
Chem Biodivers. 2007 Apr;4(4):784-802. doi: 10.1002/cbdv.200790064.
10
Diaminopurine in Nonenzymatic RNA Template Copying.
J Am Chem Soc. 2024 Jun 12;146(23):15897-15907. doi: 10.1021/jacs.4c02560. Epub 2024 May 31.

引用本文的文献

1
Suppression of errors in collectively coded information.
ArXiv. 2025 Aug 29:arXiv:2508.21806v1.
2
Overcoming nucleotide bias in the nonenzymatic copying of RNA templates.
Nucleic Acids Res. 2024 Dec 11;52(22):13515-13529. doi: 10.1093/nar/gkae982.
3
Origin & influence of autocatalytic reaction networks at the advent of the RNA world.
RNA Biol. 2024 Jan;21(1):78-92. doi: 10.1080/15476286.2024.2405757. Epub 2024 Oct 2.
4
Protocell Effects on RNA Folding, Function, and Evolution.
Acc Chem Res. 2024 Aug 6;57(15):2058-2066. doi: 10.1021/acs.accounts.4c00174. Epub 2024 Jul 15.
5
Diaminopurine in Nonenzymatic RNA Template Copying.
J Am Chem Soc. 2024 Jun 12;146(23):15897-15907. doi: 10.1021/jacs.4c02560. Epub 2024 May 31.
6
Unusual Base Pair between Two 2-Thiouridines and Its Implication for Nonenzymatic RNA Copying.
J Am Chem Soc. 2024 Feb 14;146(6):3861-3871. doi: 10.1021/jacs.3c11158. Epub 2024 Jan 31.
7
Insight into the structures of unusual base pairs in RNA complexes containing a primer/template/adenosine ligand.
RSC Chem Biol. 2023 Aug 30;4(11):942-951. doi: 10.1039/d3cb00137g. eCollection 2023 Nov 1.
8
Nonenzymatic Template-Directed Primer Extension Using 2'-3' Cyclic Nucleotides Under Wet-Dry Cycles.
Orig Life Evol Biosph. 2023 Jun;53(1-2):43-60. doi: 10.1007/s11084-023-09636-z. Epub 2023 May 27.
9
Sequencing the origins of life.
BBA Adv. 2022 Mar 5;2:100049. doi: 10.1016/j.bbadva.2022.100049. eCollection 2022.
10
Computer simulations of Template-Directed RNA Synthesis driven by temperature cycling in diverse sequence mixtures.
PLoS Comput Biol. 2022 Aug 24;18(8):e1010458. doi: 10.1371/journal.pcbi.1010458. eCollection 2022 Aug.

本文引用的文献

2
Extremely high mutation rate of a hammerhead viroid.
Science. 2009 Mar 6;323(5919):1308. doi: 10.1126/science.1169202.
3
Chemical primer extension in seconds.
Angew Chem Int Ed Engl. 2008;47(32):6065-8. doi: 10.1002/anie.200801260.
4
Template-directed synthesis of a genetic polymer in a model protocell.
Nature. 2008 Jul 3;454(7200):122-5. doi: 10.1038/nature07018. Epub 2008 Jun 4.
5
Nucleoside-5'-phosphoimidazolides: reagents for facile synthesis of dinucleoside pyrophosphates.
Curr Protoc Nucleic Acid Chem. 2006 Jan;Chapter 13:Unit 13.4. doi: 10.1002/0471142700.nc1304s23.
6
Chemical primer extension: individual steps of spontaneous replication.
Chem Biodivers. 2007 Apr;4(4):784-802. doi: 10.1002/cbdv.200790064.
7
Re-creating an RNA world.
Cell Mol Life Sci. 2006 Jun;63(11):1278-93. doi: 10.1007/s00018-006-6047-1.
8
Chemical primer extension: efficiently determining single nucleotides in DNA.
Angew Chem Int Ed Engl. 2005 Oct 14;44(40):6588-92. doi: 10.1002/anie.200501794.
9
High fidelity TNA synthesis by Therminator polymerase.
Nucleic Acids Res. 2005 Sep 12;33(16):5219-25. doi: 10.1093/nar/gki840. Print 2005.
10
Real ribozymes suggest a relaxed error threshold.
Nat Genet. 2005 Sep;37(9):1008-11. doi: 10.1038/ng1621. Epub 2005 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验