Suppr超能文献

Development of efficient suicide mechanisms for biological containment of bacteria.

作者信息

Knudsen S M, Karlström O H

机构信息

Institute of Microbiology, University of Copenhagen, Denmark.

出版信息

Appl Environ Microbiol. 1991 Jan;57(1):85-92. doi: 10.1128/aem.57.1.85-92.1991.

Abstract

To optimize plasmid containment, we have systematically investigated the factors that limit the killing efficiency of a suicide system based on the relF gene from Escherichia coli controlled by inducible lac promoters and placed on plasmids. In induction experiments with this suicide system, killing efficiency was unaffected by temperature and growth medium; there was no requirement for great promoter strength or high plasmid copy number. We could demonstrate that the factors limiting killing were the mutation rate of the suicide function and the reduced growth rate caused by a basal level of expression of the suicide gene during normal growth, which can give a selective growth advantage to cells with mutated suicide functions. The capacity of the plasmid-carried killing system to contain the plasmid was tested in transformation, transduction, and conjugational mobilization. The rate of plasmid transfer detected in these experiments seemed too high to provide adequate biological containment. As expected from the induction experiments, plasmids that escaped containment in these transfer experiments turned out to be mutated in the suicide function. With lac-induced suicide as a test, the efficiency of the system was improved by tightening the repression of the suicide gene, thereby preventing selection of cells mutated in the killing function. Reduction of the mutational inactivation rate of the suicide system by duplication of the suicide function augmented the efficiency of the suicide dramatically. These results permit the construction of extremely efficient biological containment systems.

摘要

相似文献

1
Development of efficient suicide mechanisms for biological containment of bacteria.
Appl Environ Microbiol. 1991 Jan;57(1):85-92. doi: 10.1128/aem.57.1.85-92.1991.
2
Development and testing of improved suicide functions for biological containment of bacteria.
Appl Environ Microbiol. 1995 Mar;61(3):985-91. doi: 10.1128/aem.61.3.985-991.1995.
3
A substrate-dependent biological containment system for Pseudomonas putida based on the Escherichia coli gef gene.
Appl Environ Microbiol. 1993 Nov;59(11):3713-7. doi: 10.1128/aem.59.11.3713-3717.1993.
4
A dual lethal system to enhance containment of recombinant micro-organisms.
Microbiology (Reading). 2003 Dec;149(Pt 12):3595-3601. doi: 10.1099/mic.0.26618-0.
5
A stochastic killing system for biological containment of Escherichia coli.
Appl Environ Microbiol. 1995 Feb;61(2):481-6. doi: 10.1128/aem.61.2.481-486.1995.
6
An expression vector system providing plasmid stability and conditional suicide of plasmid-containing cells.
Appl Microbiol Biotechnol. 1992 Oct;38(1):91-3. doi: 10.1007/BF00169425.
7
Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation.
Appl Environ Microbiol. 2001 Jun;67(6):2649-56. doi: 10.1128/AEM.67.6.2649-2656.2001.
8
9
Model suicide vector for containment of genetically engineered microorganisms.
Appl Environ Microbiol. 1988 Oct;54(10):2472-7. doi: 10.1128/aem.54.10.2472-2477.1988.
10
Escherichia coli K12 relA strains as safe hosts for expression of recombinant DNA.
Appl Microbiol Biotechnol. 1995 Jan;42(5):718-23. doi: 10.1007/BF00171951.

引用本文的文献

1
Multilayered safety framework for living diagnostics in the colon.
Front Syst Biol. 2023 Sep 22;3:1240040. doi: 10.3389/fsysb.2023.1240040. eCollection 2023.
2
Be a GEM: Biocontained, environmentally applied, genetically engineered microbes.
Adv Drug Deliv Rev. 2025 Jun;221:115578. doi: 10.1016/j.addr.2025.115578. Epub 2025 Apr 11.
3
Influence of Environmental Conditions on the Escape Rates of Biocontained Genetically Engineered Microbes.
Environ Sci Technol. 2024 Dec 24;58(51):22657-22667. doi: 10.1021/acs.est.4c10893. Epub 2024 Dec 13.
4
Diagnosing and engineering gut microbiomes.
EMBO Mol Med. 2024 Nov;16(11):2660-2677. doi: 10.1038/s44321-024-00149-4. Epub 2024 Oct 28.
5
Advancements in gene editing technologies for probiotic-enabled disease therapy.
iScience. 2024 Aug 22;27(9):110791. doi: 10.1016/j.isci.2024.110791. eCollection 2024 Sep 20.
6
Genetically Engineered Microorganisms and Their Impact on Human Health.
Int J Clin Pract. 2024 Mar 9;2024:6638269. doi: 10.1155/2024/6638269. eCollection 2024.
7
Polyphosphate kinase deletion increases laboratory productivity in cyanobacteria.
Front Plant Sci. 2024 Feb 7;15:1342496. doi: 10.3389/fpls.2024.1342496. eCollection 2024.
8
Engineering stringent genetic biocontainment of yeast with a protein stability switch.
Nat Commun. 2024 Feb 5;15(1):1060. doi: 10.1038/s41467-024-44988-8.
9
Safety by design: Biosafety and biosecurity in the age of synthetic genomics.
iScience. 2023 Feb 10;26(3):106165. doi: 10.1016/j.isci.2023.106165. eCollection 2023 Mar 17.
10
Genetically stable CRISPR-based kill switches for engineered microbes.
Nat Commun. 2022 Feb 3;13(1):672. doi: 10.1038/s41467-022-28163-5.

本文引用的文献

1
Mutations of Bacteria from Virus Sensitivity to Virus Resistance.
Genetics. 1943 Nov;28(6):491-511. doi: 10.1093/genetics/28.6.491.
2
High-frequency generalised transduction by bacteriophage T4.
Nature. 1979 Jul 5;280(5717):80-2. doi: 10.1038/280080a0.
3
[Sexuality of bacteria].
Boll Ist Sieroter Milan. 1950 Sep-Oct;29(9-10):281-9.
4
Analysis of gene control signals by DNA fusion and cloning in Escherichia coli.
J Mol Biol. 1980 Apr;138(2):179-207. doi: 10.1016/0022-2836(80)90283-1.
6
Escherichia coli ribosomes translate in vivo with variable rate.
EMBO J. 1984 Dec 1;3(12):2895-8. doi: 10.1002/j.1460-2075.1984.tb02227.x.
10
Formation of merodiploids in matings with a class of Rec- recipient strains of Escherichia coli K12.
Proc Natl Acad Sci U S A. 1968 May;60(1):160-7. doi: 10.1073/pnas.60.1.160.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验