Cho Nathan H, Aslan Merve, Taheri Aryan, Yildiz Ahmet, Dumont Sophie
Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA, USA.
Curr Biol. 2025 Jul 30. doi: 10.1016/j.cub.2025.07.028.
During cell division, both motor and non-motor proteins organize microtubules to build the spindle and maintain it against opposing forces. Nuclear mitotic apparatus (NuMA), a long microtubule-binding protein, is essential to spindle structure and function. NuMA recruits the motor dynein to actively cluster spindle microtubule minus-ends, but whether NuMA performs other spindle roles remains unknown. Here, we show that NuMA acts independently of dynein to passively reinforce the mammalian spindle. NuMA that cannot bind dynein is sufficient to protect spindle poles against fracture under external force. In contrast, NuMA with a shorter coiled coil or disrupted self-interactions cannot protect spindle poles, and NuMA turnover differences cannot explain mechanical differences. In vitro, NuMA's C terminus self-interacts and bundles microtubules without dynein, dependent on residues essential to pole protection in vivo. Together, this suggests that NuMA reinforces spindle poles by crosslinking microtubules, using its long coiled coil and self-interactions to reach multiple, far-reaching pole microtubules. We propose that NuMA acts as a mechanical "multitasker" targeting contractile motor activity and separately crosslinking microtubules, with both functions synergizing to drive spindle mechanical robustness.
在细胞分裂过程中,运动蛋白和非运动蛋白都会组织微管以构建纺锤体,并抵抗相反的力来维持纺锤体。核有丝分裂装置(NuMA)是一种长的微管结合蛋白,对纺锤体的结构和功能至关重要。NuMA招募动力蛋白来主动聚集纺锤体微管的负端,但NuMA是否发挥其他纺锤体作用仍不清楚。在这里,我们表明NuMA独立于动力蛋白发挥作用,以被动增强哺乳动物的纺锤体。无法结合动力蛋白的NuMA足以保护纺锤体极在外部力作用下不发生断裂。相比之下,具有较短卷曲螺旋或自我相互作用被破坏的NuMA不能保护纺锤体极,并且NuMA周转差异无法解释机械差异。在体外,NuMA的C末端在没有动力蛋白的情况下自我相互作用并捆绑微管,这依赖于体内对纺锤体极保护至关重要的残基。总之,这表明NuMA通过交联微管来增强纺锤体极,利用其长的卷曲螺旋和自我相互作用来连接多个延伸到远处的极微管。我们提出,NuMA作为一种机械“多面手”,靶向收缩性运动蛋白活性并分别交联微管,这两种功能协同作用以驱动纺锤体的机械稳健性。