EMBL, Heidelberg, 69117 Germany.
BMC Bioinformatics. 2013 Oct 16;14:308. doi: 10.1186/1471-2105-14-308.
The combination of time-lapse imaging of live cells with high-throughput perturbation assays is a powerful tool for genetics and cell biology. The Mitocheck project employed this technique to associate thousands of genes with transient biological phenotypes in cell division, cell death and migration. The original analysis of these data proceeded by assigning nuclear morphologies to cells at each time-point using automated image classification, followed by description of population frequencies and temporal distribution of cellular states through event-order maps. One of the choices made by that analysis was not to rely on temporal tracking of the individual cells, due to the relatively low image sampling frequency, and to focus on effects that could be discerned from population-level behaviour.
Here, we present a variation of this approach that employs explicit modelling by dynamic differential equations of the cellular state populations. Model fitting to the time course data allowed reliable estimation of the penetrance and time of appearance of four types of disruption of the cell cycle: quiescence, mitotic arrest, polynucleation and cell death. Model parameters yielded estimates of the duration of the interphase and mitosis phases. We identified 2190 siRNAs that induced a disruption of the cell cycle at reproducible times, or increased the durations of the interphase or mitosis phases.
We quantified the dynamic effects of the siRNAs and compiled them as a resource that can be used to characterize the role of their target genes in cell death, mitosis and cell cycle regulation. The described population-based modelling method might be applicable to other large-scale cell-based assays with temporal readout when only population-level measures are available.
活细胞延时成像与高通量扰动分析的结合是遗传学和细胞生物学的强大工具。Mitocheck 项目采用这种技术将数千个基因与细胞分裂、细胞死亡和迁移中的瞬时生物学表型相关联。对这些数据的原始分析是通过使用自动图像分类为每个时间点的细胞分配核形态,然后通过事件顺序图描述细胞状态的群体频率和时间分布来进行的。由于图像采样频率相对较低,该分析没有选择依赖于单个细胞的时间追踪,而是专注于可以从群体水平行为中识别出的影响。
在这里,我们提出了一种这种方法的变体,它使用细胞状态群体的动态微分方程进行显式建模。模型拟合时间过程数据允许可靠地估计细胞周期中四种干扰类型的外显率和出现时间:静止、有丝分裂阻滞、多核化和细胞死亡。模型参数提供了间期和有丝分裂期持续时间的估计值。我们鉴定了 2190 个 siRNA,它们在可重复的时间内诱导细胞周期中断,或增加间期或有丝分裂期的持续时间。
我们量化了 siRNA 的动态效应,并将其汇编成一个资源,可用于表征其靶基因在细胞死亡、有丝分裂和细胞周期调控中的作用。当只有群体水平的测量值可用时,所描述的基于群体的建模方法可能适用于其他具有时间读数的大规模基于细胞的测定。