Bernstein Center for Computational Neuroscience, 10115 Berlin, Germany.
Phys Rev Lett. 2009 Dec 11;103(24):248105. doi: 10.1103/PhysRevLett.103.248105. Epub 2009 Dec 9.
Starting from a general description of noisy limit cycle oscillators, we derive from the Fokker-Planck equations the linear response of the instantaneous oscillator frequency to a time-varying external force. We consider the time series of zero crossings of the oscillator's phase and compute the mutual information between it and the driving force. A direct link is established between the phase response curve summarizing the oscillator dynamics and the ability of a limit cycle oscillator, such as a heart cell or neuron, to encode information in the timing of peaks in the oscillation.
从对噪声极限环振荡器的一般描述出发,我们从福克-普朗克方程推导出瞬时振荡器频率对时变外力的线性响应。我们考虑振荡器相位的过零点时间序列,并计算它与驱动力之间的互信息。总结振荡器动力学的相位响应曲线与极限环振荡器(如心脏细胞或神经元)将信息编码到振荡峰值时间中的能力之间建立了直接联系。