Suppr超能文献

鉴定自发活动感觉神经元中的时间代码。

Identifying temporal codes in spontaneously active sensory neurons.

机构信息

Neuroscience Program, Ohio University, Athens, Ohio, United States of America.

出版信息

PLoS One. 2011;6(11):e27380. doi: 10.1371/journal.pone.0027380. Epub 2011 Nov 8.

Abstract

The manner in which information is encoded in neural signals is a major issue in Neuroscience. A common distinction is between rate codes, where information in neural responses is encoded as the number of spikes within a specified time frame (encoding window), and temporal codes, where the position of spikes within the encoding window carries some or all of the information about the stimulus. One test for the existence of a temporal code in neural responses is to add artificial time jitter to each spike in the response, and then assess whether or not information in the response has been degraded. If so, temporal encoding might be inferred, on the assumption that the jitter is small enough to alter the position, but not the number, of spikes within the encoding window. Here, the effects of artificial jitter on various spike train and information metrics were derived analytically, and this theory was validated using data from afferent neurons of the turtle vestibular and paddlefish electrosensory systems, and from model neurons. We demonstrate that the jitter procedure will degrade information content even when coding is known to be entirely by rate. For this and additional reasons, we conclude that the jitter procedure by itself is not sufficient to establish the presence of a temporal code.

摘要

信息在神经信号中的编码方式是神经科学中的一个主要问题。一种常见的区分方法是:在速率编码中,神经反应中的信息被编码为在指定时间框架(编码窗口)内的尖峰数量;而在时间编码中,编码窗口内尖峰的位置携带关于刺激的部分或全部信息。检验神经反应中是否存在时间编码的一种方法是对反应中的每个尖峰添加人工时间抖动,然后评估反应中的信息是否已经降级。如果是这样,则可以推断存在时间编码,假设抖动足够小,只会改变编码窗口内的尖峰位置,而不会改变其数量。在这里,通过分析推导出了人工抖动对各种尖峰序列和信息度量的影响,并且使用来自龟前庭和鲟鱼电感觉系统传入神经元以及模型神经元的数据验证了该理论。我们证明,即使编码已知完全是通过速率进行的,抖动过程也会降低信息含量。由于这个原因以及其他原因,我们得出结论,抖动过程本身不足以确定是否存在时间编码。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验