Center for Genome Sciences, Washington University School of Medicine, St. Louis, MO 63108, USA.
Sci Transl Med. 2009 Nov 11;1(6):6ra14. doi: 10.1126/scitranslmed.3000322.
Diet and nutritional status are among the most important modifiable determinants of human health. The nutritional value of food is influenced in part by a person's gut microbial community (microbiota) and its component genes (microbiome). Unraveling the interrelations among diet, the structure and operations of the gut microbiota, and nutrient and energy harvest is confounded by variations in human environmental exposures, microbial ecology, and genotype. To help overcome these problems, we created a well-defined, representative animal model of the human gut ecosystem by transplanting fresh or frozen adult human fecal microbial communities into germ-free C57BL/6J mice. Culture-independent metagenomic analysis of the temporal, spatial, and intergenerational patterns of bacterial colonization showed that these humanized mice were stably and heritably colonized and reproduced much of the bacterial diversity of the donor's microbiota. Switching from a low-fat, plant polysaccharide-rich diet to a high-fat, high-sugar "Western" diet shifted the structure of the microbiota within a single day, changed the representation of metabolic pathways in the microbiome, and altered microbiome gene expression. Reciprocal transplants involving various combinations of donor and recipient diets revealed that colonization history influences the initial structure of the microbial community but that these effects can be rapidly altered by diet. Humanized mice fed the Western diet have increased adiposity; this trait is transmissible via microbiota transplantation. Humanized gnotobiotic mice will be useful for conducting proof-of-principle "clinical trials" that test the effects of environmental and genetic factors on the gut microbiota and host physiology. Nearly full-length 16S rRNA gene sequences are deposited in GenBank under the accession numbers GQ491120 to GQ493997.
饮食和营养状况是影响人类健康的最重要的可改变因素之一。食物的营养价值部分受个体肠道微生物群落(微生物组)及其组成基因(宏基因组)的影响。由于人类环境暴露、微生物生态学和基因型的变化,揭示饮食、肠道微生物群落的结构和功能以及营养和能量收获之间的相互关系变得复杂。为了帮助克服这些问题,我们通过将新鲜或冷冻的成人粪便微生物群落移植到无菌 C57BL/6J 小鼠中,创建了一个定义明确、具有代表性的人类肠道生态系统动物模型。对细菌定植的时间、空间和代际模式的非培养宏基因组分析表明,这些人源化小鼠被稳定且遗传定植,并再现了供体微生物组的大部分细菌多样性。从低脂肪、富含植物多糖的饮食切换到高脂肪、高糖的“西方”饮食,在一天内改变了微生物群的结构,改变了微生物组中代谢途径的表现,并改变了微生物组基因表达。涉及各种供体和受体饮食组合的互惠移植表明,定植历史会影响微生物群落的初始结构,但饮食可以迅速改变这些影响。喂食西方饮食的人源化小鼠肥胖程度增加;这种特征可以通过微生物群移植传递。人源化无菌小鼠将有助于进行原理验证“临床试验”,以测试环境和遗传因素对肠道微生物群和宿主生理学的影响。全长 16S rRNA 基因序列已在 GenBank 中以 GQ491120 至 GQ493997 的 accession numbers 进行了存储。