Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra ACT 0200, Australia.
Philos Trans R Soc Lond B Biol Sci. 2010 May 12;365(1545):1429-35. doi: 10.1098/rstb.2009.0293.
Plant ecologists have proposed a variety of optimization theories to explain the adaptive behaviour and evolution of plants from the perspective of natural selection ('survival of the fittest'). Optimization theories identify some objective function--such as shoot or canopy photosynthesis, or growth rate--which is maximized with respect to one or more plant functional traits. However, the link between these objective functions and individual plant fitness is seldom quantified and there remains some uncertainty about the most appropriate choice of objective function to use. Here, plants are viewed from an alternative thermodynamic perspective, as members of a wider class of non-equilibrium systems for which maximum entropy production (MEP) has been proposed as a common theoretical principle. I show how MEP unifies different plant optimization theories that have been proposed previously on the basis of ad hoc measures of individual fitness--the different objective functions of these theories emerge as examples of entropy production on different spatio-temporal scales. The proposed statistical explanation of MEP, that states of MEP are by far the most probable ones, suggests a new and extended paradigm for biological evolution--'survival of the likeliest'--which applies from biomacromolecules to ecosystems, not just to individuals.
植物生态学家提出了多种优化理论,从自然选择(“适者生存”)的角度解释植物的适应行为和进化。优化理论确定了一些目标函数——例如,茎或冠层光合作用,或生长速率——这些目标函数是相对于一个或多个植物功能特性最大化的。然而,这些目标函数与个体植物适应性之间的联系很少被量化,并且对于使用哪种最合适的目标函数仍然存在一些不确定性。在这里,植物从热力学的另一个角度来看待,作为更广泛的非平衡系统的成员,最大熵产生(MEP)已被提议作为一个共同的理论原则。我展示了 MEP 如何统一以前基于个体适应性的特定措施提出的不同植物优化理论——这些理论的不同目标函数是在不同时空尺度上产生熵的例子。关于 MEP 的拟议统计解释,即 MEP 状态迄今为止是最有可能的状态,为生物进化提出了一个新的和扩展的范式——“最有可能的生存”——它适用于从生物大分子到生态系统,而不仅仅是个体。