Suppr超能文献

推导出体循环动脉中血流和血压的集总模型。

On deriving lumped models for blood flow and pressure in the systemic arteries.

机构信息

Department of Mathematics, North Carolina State University, Box 8205, Raleigh, NC 27695, Edwardsville, Illinois, 62026-1653.

出版信息

Math Biosci Eng. 2004 Jun;1(1):61-80. doi: 10.3934/mbe.2004.1.61.

Abstract

Windkessel and similar lumped models are often used to represent blood flow and pressure in systemic arteries. The windkessel model was originally developed by Stephen Hales (1733) and Otto Frank (1899) who used it to describe blood flow in the heart. In this paper we start with the onedimensional axisymmetric Navier-Stokes equations for time-dependent blood flow in a rigid vessel to derive lumped models relating flow and pressure. This is done through Laplace transform and its inversion via residue theory. Upon keeping contributions from one, two, or more residues, we derive lumped models of successively higher order. We focus on zeroth, first and second order models and relate them to electrical circuit analogs, in which current is equivalent to flow and voltage to pressure. By incorporating effects of compliance through addition of capacitors, windkessel and related lumped models are obtained. Our results show that given the radius of a blood vessel, it is possible to determine the order of the model that would be appropriate for analyzing the flow and pressure in that vessel. For instance, in small rigid vessels ( R < 0.2 cm) it is adequate to use Poiseuille's law to express the relation between flow and pressure, whereas for large vessels it might be necessary to incorporate spatial dependence by using a one-dimensional model accounting for axial variations.

摘要

风箱和类似的集总模型常用于表示体循环动脉中的血流和压力。风箱模型最初由 Stephen Hales(1733 年)和 Otto Frank(1899 年)开发,用于描述心脏中的血流。在本文中,我们从刚性容器中随时间变化的血液流动的一维轴对称纳维-斯托克斯方程开始,推导出与流动和压力相关的集总模型。这是通过拉普拉斯变换及其通过残数理论的反演来完成的。通过保留一个、两个或更多残数的贡献,我们推导出了逐阶更高的集总模型。我们重点研究零阶、一阶和二阶模型,并将它们与电路模拟联系起来,其中电流等效于流量,电压等效于压力。通过添加电容器来考虑顺应性的影响,可以得到风箱和相关的集总模型。我们的结果表明,给定血管的半径,可以确定用于分析该血管中流动和压力的模型的阶数。例如,在小刚性容器(R < 0.2 cm)中,使用泊肃叶定律来表达流量和压力之间的关系是足够的,而对于大容器,可能需要使用考虑轴向变化的一维模型来包含空间依赖性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验