Suppr超能文献

生物大分子的动力学:不只是被水化水简单奴役。

Dynamics of biological macromolecules: not a simple slaving by hydration water.

机构信息

Department of Polymer Science, University of Akron, Akron, Ohio, USA.

出版信息

Biophys J. 2010 Apr 7;98(7):1321-6. doi: 10.1016/j.bpj.2009.12.4284.

Abstract

We studied the dynamics of hydrated tRNA using neutron and dielectric spectroscopy techniques. A comparison of our results with earlier data reveals that the dynamics of hydrated tRNA is slower and varies more strongly with temperature than the dynamics of hydrated proteins. At the same time, tRNA appears to have faster dynamics than DNA. We demonstrate that a similar difference appears in the dynamics of hydration water for these biomolecules. The results and analysis contradict the traditional view of slaved dynamics, which assumes that the dynamics of biological macromolecules just follows the dynamics of hydration water. Our results demonstrate that the dynamics of biological macromolecules and their hydration water depends strongly on the chemical and three-dimensional structures of the biomolecules. We conclude that the whole concept of slaving dynamics should be reconsidered, and that the mutual influence of biomolecules and their hydration water must be taken into account.

摘要

我们使用中子和介电谱技术研究了水合 tRNA 的动力学。将我们的结果与早期数据进行比较表明,水合 tRNA 的动力学比水合蛋白质的动力学更慢,且随温度的变化更大。同时,tRNA 的动力学似乎比 DNA 更快。我们证明,这些生物分子的水合动力学也存在类似的差异。研究结果和分析与传统的从属动力学观点相矛盾,该观点认为生物大分子的动力学只是随水合动力学的变化而变化。我们的研究结果表明,生物大分子及其水合动力学强烈依赖于生物分子的化学和三维结构。我们得出结论,从属动力学的整个概念应该重新考虑,必须考虑生物分子及其水合之间的相互影响。

相似文献

1
Dynamics of biological macromolecules: not a simple slaving by hydration water.
Biophys J. 2010 Apr 7;98(7):1321-6. doi: 10.1016/j.bpj.2009.12.4284.
2
Water-coupled low-frequency modes of myoglobin and lysozyme observed by inelastic neutron scattering.
Biophys J. 1997 Nov;73(5):2726-32. doi: 10.1016/S0006-3495(97)78301-2.
3
Dynamics of tRNA at different levels of hydration.
Biophys J. 2009 Apr 8;96(7):2755-62. doi: 10.1016/j.bpj.2008.12.3895.
5
The low-temperature dynamic crossover phenomenon in protein hydration water: simulations vs experiments.
J Phys Chem B. 2008 Feb 14;112(6):1571-5. doi: 10.1021/jp710714j. Epub 2008 Jan 19.
6
Atomistic details of protein dynamics and the role of hydration water.
Biochim Biophys Acta Gen Subj. 2017 Jan;1861(1 Pt B):3546-3552. doi: 10.1016/j.bbagen.2016.04.028. Epub 2016 May 4.
7
The origin of the dynamic transition in proteins.
J Chem Phys. 2008 May 21;128(19):195106. doi: 10.1063/1.2927871.
8
Common features in the microscopic dynamics of hydration water on organic and inorganic surfaces.
J Phys Condens Matter. 2012 Feb 15;24(6):064104. doi: 10.1088/0953-8984/24/6/064104. Epub 2012 Jan 25.
9
Effects of hydration water on protein methyl group dynamics in solution.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 1):040902. doi: 10.1103/PhysRevE.75.040902. Epub 2007 Apr 30.
10
Light-scattering studies of protein solutions: role of hydration in weak protein-protein interactions.
Biophys J. 2005 Sep;89(3):1564-73. doi: 10.1529/biophysj.105.065284. Epub 2005 Jun 24.

引用本文的文献

2
Water slowing down drives the occurrence of the low temperature dynamical transition in microgels.
Chem Sci. 2024 May 21;15(24):9249-9257. doi: 10.1039/d4sc02650k. eCollection 2024 Jun 19.
3
Water molecule ordering on the surface of an intrinsically disordered protein.
Biophys J. 2023 Nov 21;122(22):4326-4335. doi: 10.1016/j.bpj.2023.10.007. Epub 2023 Oct 14.
5
Structure and dynamics of supercooled water in the hydration layer of poly(ethylene glycol).
Struct Dyn. 2022 Sep 8;9(5):054901. doi: 10.1063/4.0000158. eCollection 2022 Sep.
7
Water Networks Repopulate Protein-Ligand Interfaces with Temperature.
Angew Chem Int Ed Engl. 2022 Aug 1;61(31):e202112919. doi: 10.1002/anie.202112919. Epub 2022 Jun 21.
9
Nonthermal excitation effects mediated by sub-terahertz radiation on hydrogen exchange in ubiquitin.
Biophys J. 2021 Jun 15;120(12):2386-2393. doi: 10.1016/j.bpj.2021.04.013. Epub 2021 May 1.

本文引用的文献

1
Dynamics of tRNA at different levels of hydration.
Biophys J. 2009 Apr 8;96(7):2755-62. doi: 10.1016/j.bpj.2008.12.3895.
2
Origins of apparent fragile-to-strong transitions of protein hydration waters.
Phys Rev Lett. 2008 Nov 28;101(22):225701. doi: 10.1103/PhysRevLett.101.225701. Epub 2008 Nov 26.
3
Influence of hydration on protein dynamics: combining dielectric and neutron scattering spectroscopy data.
J Phys Chem B. 2008 Nov 13;112(45):14273-80. doi: 10.1021/jp8059807. Epub 2008 Oct 23.
4
Fingerprints of amorphous icelike behavior in the vibrational density of states of protein hydration water.
Phys Rev Lett. 2008 Oct 3;101(14):148104. doi: 10.1103/PhysRevLett.101.148104.
5
The origin of the dynamic transition in proteins.
J Chem Phys. 2008 May 21;128(19):195106. doi: 10.1063/1.2927871.
6
Methyl group dynamics and the onset of anharmonicity in myoglobin.
J Phys Chem B. 2008 May 1;112(17):5522-33. doi: 10.1021/jp076641z. Epub 2008 Apr 10.
7
Conductivity in hydrated proteins: no signs of the fragile-to-strong crossover.
Phys Rev Lett. 2008 Mar 14;100(10):108103. doi: 10.1103/PhysRevLett.100.108103.
8
Observation of a dynamic crossover in RNA hydration water which triggers a dynamic transition in the biopolymer.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jan;77(1 Pt 1):011908. doi: 10.1103/PhysRevE.77.011908. Epub 2008 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验