Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
Sci Transl Med. 2010 Mar 24;2(24):24ra22. doi: 10.1126/scitranslmed.3000738.
In all current implantable medical devices such as pacemakers, deep brain stimulators, and epilepsy treatment devices, each electrode is independently connected to separate control systems. The ability of these devices to sample and stimulate tissues is hindered by this configuration and by the rigid, planar nature of the electronics and the electrode-tissue interfaces. Here, we report the development of a class of mechanically flexible silicon electronics for multiplexed measurement of signals in an intimate, conformal integrated mode on the dynamic, three-dimensional surfaces of soft tissues in the human body. We demonstrate this technology in sensor systems composed of 2016 silicon nanomembrane transistors configured to record electrical activity directly from the curved, wet surface of a beating porcine heart in vivo. The devices sample with simultaneous submillimeter and submillisecond resolution through 288 amplified and multiplexed channels. We use this system to map the spread of spontaneous and paced ventricular depolarization in real time, at high resolution, on the epicardial surface in a porcine animal model. This demonstration is one example of many possible uses of this technology in minimally invasive medical devices.
在所有当前的植入式医疗设备中,如心脏起搏器、深部脑刺激器和癫痫治疗设备,每个电极都独立连接到单独的控制系统。这种配置以及电子设备和电极-组织界面的刚性、平面性质限制了这些设备对组织进行采样和刺激的能力。在这里,我们报告了一类机械柔性硅电子产品的开发,用于以亲密、共形的集成方式在人体柔软组织的动态、三维表面上对信号进行多路复用测量。我们在由 2016 个硅纳米膜晶体管组成的传感器系统中展示了这项技术,这些晶体管被配置为直接记录活体搏动猪心的弯曲、湿润表面上的电活动。该设备通过 288 个放大和多路复用通道以亚毫米和亚毫秒级的同时分辨率进行采样。我们使用该系统在猪动物模型的心外膜表面上实时、高分辨率地绘制自发和起搏心室去极化的传播图。该演示是该技术在微创医疗设备中许多可能用途的一个示例。