Suppr超能文献

活体人类视锥光感受器中外段更新的成像

Imaging outer segment renewal in living human cone photoreceptors.

作者信息

Jonnal Ravi S, Besecker Jason R, Derby Jack C, Kocaoglu Omer P, Cense Barry, Gao Weihua, Wang Qiang, Miller Donald T

机构信息

Program in Vision Science, Indiana University, 800 East Atwater Avenue, Bloomington, IN 47405, USA.

出版信息

Opt Express. 2010 Mar 1;18(5):5257-70. doi: 10.1364/OE.18.005257.

Abstract

In vertebrate eyes, vision begins when the photoreceptor's outer segment absorbs photons and generates a neural signal destined for the brain. The extreme optical and metabolic demands of this process of phototransduction necessitate continual renewal of the outer segment. Outer segment renewal has been long studied in post-mortem rods using autoradiography, but has been observed neither in living photoreceptors nor directly in cones. Using adaptive optics, which permits the resolution of cones, and temporally coherent illumination, which transforms the outer segment into a "biological interferometer," we observed cone renewal in three subjects, manifesting as elongation of the cone outer segment, with rates ranging from 93 to 113 nm/hour (2.2 to 2.7 microm/day). In one subject we observed renewal occurring over 24 hours, with small but significant changes in renewal rate over the day. We determined that this novel method is sensitive to changes in outer segment length of 139 nm, more than 20 times better than the axial resolution of ultra-high resolution optical coherence tomography, the best existing method for depth imaging of the living retina.

摘要

在脊椎动物眼中,当光感受器的外段吸收光子并产生发往大脑的神经信号时,视觉就开始了。光转导过程对光学和代谢有着极高的要求,这使得外段需要不断更新。外段更新长期以来一直通过放射自显影技术在死后的视杆细胞中进行研究,但在活的光感受器中从未观察到,在视锥细胞中也未直接观察到。利用能分辨视锥细胞的自适应光学技术以及能将外段转变为“生物干涉仪”的时间相干照明技术,我们在三名受试者中观察到了视锥细胞的更新,表现为视锥细胞外段的伸长,更新速率在93至113纳米/小时(2.2至2.7微米/天)之间。在一名受试者中,我们观察到更新过程持续了24小时,且一天内更新速率有微小但显著的变化。我们确定这种新方法对外段长度139纳米的变化很敏感,比超高分辨率光学相干断层扫描的轴向分辨率好20多倍,而超高分辨率光学相干断层扫描是目前对活体视网膜进行深度成像的最佳方法。

相似文献

1
Imaging outer segment renewal in living human cone photoreceptors.
Opt Express. 2010 Mar 1;18(5):5257-70. doi: 10.1364/OE.18.005257.
2
Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
Adv Exp Med Biol. 2002;514:179-203. doi: 10.1007/978-1-4615-0121-3_11.
4
Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics.
Biomed Opt Express. 2012 Jan 1;3(1):104-24. doi: 10.1364/BOE.3.000104. Epub 2011 Dec 13.
5
The cellular origins of the outer retinal bands in optical coherence tomography images.
Invest Ophthalmol Vis Sci. 2014 Oct 16;55(12):7904-18. doi: 10.1167/iovs.14-14907.
6
The Negative Cone Mosaic: A New Manifestation of the Optical Stiles-Crawford Effect in Normal Eyes.
Invest Ophthalmol Vis Sci. 2015 Nov;56(12):7043-50. doi: 10.1167/iovs.15-17022.
10
In vivo optical imaging of physiological responses to photostimulation in human photoreceptors.
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13138-13143. doi: 10.1073/pnas.1606428113. Epub 2016 Oct 11.

引用本文的文献

2
Quantification of optical lensing by cellular structures in the living human eye.
Biomed Opt Express. 2025 Jan 7;16(2):473-498. doi: 10.1364/BOE.547734. eCollection 2025 Feb 1.
3
Improved tracking of corneal immune cell dynamics using confocal microscopy.
Biomed Opt Express. 2024 Oct 10;15(11):6277-6298. doi: 10.1364/BOE.536553. eCollection 2024 Nov 1.
4
Optical Assessment of Photoreceptor Function Over the Macula.
Transl Vis Sci Technol. 2024 Aug 1;13(8):41. doi: 10.1167/tvst.13.8.41.
5
Mathematical model for rod outer segment dynamics during retinal detachment.
PLoS One. 2024 Jun 7;19(6):e0297419. doi: 10.1371/journal.pone.0297419. eCollection 2024.
6
Retinal atrophy, inflammation, phagocytic and metabolic disruptions develop in the MerTK-cleavage-resistant mouse model.
Front Neurosci. 2024 Apr 12;18:1256522. doi: 10.3389/fnins.2024.1256522. eCollection 2024.
9
Peak Cone Density Predicted from Outer Segment Length Measured on Optical Coherence Tomography.
Curr Eye Res. 2024 Mar;49(3):314-324. doi: 10.1080/02713683.2023.2289853. Epub 2023 Dec 26.
10
Pearls and Pitfalls of Adaptive Optics Ophthalmoscopy in Inherited Retinal Diseases.
Diagnostics (Basel). 2023 Jul 19;13(14):2413. doi: 10.3390/diagnostics13142413.

本文引用的文献

1
The renewal of rod and cone outer segments in the rhesus monkey.
J Cell Biol. 1971 May 1;49(2):303-18. doi: 10.1083/jcb.49.2.303.
2
In vivo functional imaging of human cone photoreceptors.
Opt Express. 2007 Nov 26;15(24):16141-60.
3
Adaptive optics flood-illumination camera for high speed retinal imaging.
Opt Express. 2006 May 15;14(10):4552-69. doi: 10.1364/oe.14.004552.
4
Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina.
Opt Express. 2005 Jun 13;13(12):4792-811. doi: 10.1364/opex.13.004792.
5
Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography.
Opt Express. 2004 May 31;12(11):2435-47. doi: 10.1364/opex.12.002435.
7
Regulation of retinal photoreceptor phagocytosis in a diurnal mammal by circadian clocks and ambient lighting.
Invest Ophthalmol Vis Sci. 2009 Jul;50(7):3495-502. doi: 10.1167/iovs.08-3145. Epub 2009 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验