Suppr超能文献

利用生物共轭的椭圆形金纳米粒子实现沙门氏菌的快速比色鉴定和靶向光热裂解。

Rapid colorimetric identification and targeted photothermal lysis of Salmonella bacteria by using bioconjugated oval-shaped gold nanoparticles.

机构信息

Department of Chemistry, Jackson State University, Jackson, MS, USA.

出版信息

Chemistry. 2010 May 17;16(19):5600-6. doi: 10.1002/chem.201000176.

Abstract

Salmonella bacteria are the major cause for the infection of 16 million people worldwide with typhoid fever each year. Antibiotic-resistant Salmonella strains have been isolated from various food products. As a result, the development of ultrasensitive sensing technology for detection and new approaches for the treatment of infectious bacterial pathogens that do not rely on traditional therapeutic regimes is very urgent for public health, food safety, and the world economy. Driven by this need, we report herein a nanotechnology-driven approach that uses antibody-conjugated oval-shaped gold nanoparticles to selectively target and destroy pathogenic bacteria. Our experiments have shown the use of a simple colorimetric assay, with an anti-salmonella antibody conjugated to oval-shaped gold nanoparticles, for the label-free detection of S. typhimurium with an excellent detection limit (10(4) bacteria per mL) and high selectivity over other pathogens. When bacteria conjugated to oval-shaped gold nanoparticles were exposed to near-infrared radiation, a highly significant reduction in bacterial cell viability was observed due to photothermal lysis. Ideally, this nanotechnology-based assay would have enormous potential for rapid, on-site pathogen detection to avoid the distribution of contaminated foods.

摘要

沙门氏菌是导致全球每年 1600 万人感染伤寒的主要原因。从各种食品中分离出了具有抗生素耐药性的沙门氏菌菌株。因此,迫切需要开发用于检测的超灵敏传感技术和新方法,以治疗不依赖传统治疗方案的传染性细菌病原体。受此需求的驱动,我们在此报告了一种基于纳米技术的方法,该方法使用抗体偶联的椭圆形金纳米颗粒来选择性地靶向和破坏致病性细菌。我们的实验表明,使用简单的比色测定法,将抗沙门氏菌抗体偶联到椭圆形金纳米颗粒上,可以对 S. typhimurium 进行无标记检测,检测限非常低(10(4)个细菌/mL),并且对其他病原体具有很高的选择性。当与椭圆形金纳米颗粒偶联的细菌暴露于近红外辐射时,由于光热裂解,细菌的细胞活力会显著降低。理想情况下,这种基于纳米技术的检测方法具有巨大的潜力,可用于快速现场病原体检测,以避免污染食品的传播。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验