Suppr超能文献

爆米花状磁芯-等离子壳多功能纳米粒子,用于靶向磁分离和富集、无标记 SERS 成像以及多药耐药菌的光热破坏。

Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria.

机构信息

Department of Chemistry, Jackson State University, Jackson, MS, USA.

出版信息

Chemistry. 2013 Feb 18;19(8):2839-47. doi: 10.1002/chem.201202948. Epub 2013 Jan 7.

Abstract

Over the last few years, one of the most important and complex problems facing our society is treating infectious diseases caused by multidrug-resistant bacteria (MDRB), by using current market-existing antibiotics. Driven by this need, we report for the first time the development of the multifunctional popcorn-shaped iron magnetic core-gold plasmonic shell nanotechnology-driven approach for targeted magnetic separation and enrichment, label-free surface-enhanced Raman spectroscopy (SERS) detection, and the selective photothermal destruction of MDR Salmonella DT104. Due to the presence of the "lightning-rod effect", the core-shell popcorn-shaped gold-nanoparticle tips provided a huge field of SERS enhancement. The experimental data show that the M3038 antibody-conjugated nanoparticles can be used for targeted separation and SERS imaging of MDR Salmonella DT104. A targeted photothermal-lysis experiment, by using 670 nm light at 1.5 W cm(-2) for 10 min, results in selective and irreparable cellular-damage to MDR Salmonella. We discuss the possible mechanism and operating principle for the targeted separation, label-free SERS imaging, and photothermal destruction of MDRB by using the popcorn-shaped magnetic/plasmonic nanotechnology.

摘要

在过去的几年中,我们的社会面临的一个最重要和最复杂的问题是使用现有的市场抗生素来治疗由多药耐药菌(MDRB)引起的传染病。受此需求的推动,我们首次报道了多功能爆米花形铁磁芯-金等离子壳纳米技术的发展,用于靶向磁分离和富集、无标记表面增强拉曼光谱(SERS)检测,以及多药耐药性沙门氏菌 DT104 的选择性光热破坏。由于存在“避雷针效应”,核壳爆米花形金纳米颗粒尖端提供了巨大的 SERS 增强场。实验数据表明,M3038 抗体偶联的纳米颗粒可用于多药耐药性沙门氏菌 DT104 的靶向分离和 SERS 成像。通过使用 670nm 光在 1.5W/cm²下照射 10 分钟进行靶向光热裂解实验,可导致多药耐药性沙门氏菌的选择性和不可修复的细胞损伤。我们讨论了使用爆米花形磁性/等离子体纳米技术进行靶向分离、无标记 SERS 成像和光热破坏多药耐药菌的可能机制和工作原理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验