Lagoutte Emilie, Mimoun Sabria, Andriamihaja Mireille, Chaumontet Catherine, Blachier François, Bouillaud Frédéric
CNRS-FRE3210, Université René Descartes, Site Necker 156 rue de Vaugirard, 75730 Paris cedex15, France.
Biochim Biophys Acta. 2010 Aug;1797(8):1500-11. doi: 10.1016/j.bbabio.2010.04.004. Epub 2010 Apr 14.
Sulfide (H2S) is an inhibitor of mitochondrial cytochrome oxidase comparable to cyanide. In this study, poisoning of cells was observed with sulfide concentrations above 20 microM. Sulfide oxidation has been shown to take place in organisms/cells naturally exposed to sulfide. Sulfide is released as a result of metabolism of sulfur containing amino acids. Although in mammals sulfide exposure is not thought to be quantitatively important outside the colonic mucosa, our study shows that a majority of mammalian cells, by means of the mitochondrial sulfide quinone reductase (SQR), avidly consume sulfide as a fuel. The SQR activity was found in mitochondria isolated from mouse kidneys, liver, and heart. We demonstrate the precedence of the SQR over the mitochondrial complex I. This explains why the oxidation of the mineral substrate sulfide takes precedence over the oxidation of other (carbon-based) mitochondrial substrates. Consequently, if sulfide delivery rate remains lower than the SQR activity, cells maintain a non-toxic sulfide concentration (<1 microM) in their external environment. In the colonocyte cell line HT-29, sulfide oxidation provided the first example of reverse electron transfer in living cells, such a transfer increasing sulfide tolerance. However, SQR activity was not detected in brain mitochondria and neuroblastoma cells. Consequently, the neural tissue would be more sensitive to sulfide poisoning. Our data disclose new constraints concerning the emerging signaling role of sulfide.
硫化物(H₂S)是一种与氰化物类似的线粒体细胞色素氧化酶抑制剂。在本研究中,当硫化物浓度高于20微摩尔时可观察到细胞中毒现象。已证明硫化物氧化发生在自然暴露于硫化物的生物体/细胞中。硫化物是含硫氨基酸代谢的产物。尽管在哺乳动物中,除结肠黏膜外,硫化物暴露在数量上被认为并不重要,但我们的研究表明,大多数哺乳动物细胞通过线粒体硫化物醌还原酶(SQR),会大量消耗硫化物作为燃料。在从小鼠肾脏、肝脏和心脏分离出的线粒体中发现了SQR活性。我们证明了SQR优先于线粒体复合物I。这解释了为什么矿物底物硫化物的氧化优先于其他(基于碳的)线粒体底物的氧化。因此,如果硫化物的供应速率低于SQR活性,细胞在其外部环境中维持无毒的硫化物浓度(<1微摩尔)。在结肠癌细胞系HT - 29中,硫化物氧化提供了活细胞中反向电子传递的首个例子,这种传递增加了对硫化物的耐受性。然而,在脑线粒体和神经母细胞瘤细胞中未检测到SQR活性。因此,神经组织对硫化物中毒会更敏感。我们的数据揭示了有关硫化物新出现的信号传导作用的新限制。