Suppr超能文献

用于弹性成像的仿体材料的非线性弹性行为。

Nonlinear elastic behavior of phantom materials for elastography.

机构信息

Medical Physics Department, University of Wisconsin, Room 1005, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI 53705, USA.

出版信息

Phys Med Biol. 2010 May 7;55(9):2679-92. doi: 10.1088/0031-9155/55/9/017. Epub 2010 Apr 19.

Abstract

The development of phantom materials for elasticity imaging is reported in this paper. These materials were specifically designed to provide nonlinear stress/strain relationship that can be controlled independently of the small strain shear modulus of the material. The materials are mixtures of agar and gelatin gels. Oil droplet dispersions in these materials provide further control of the small strain shear modulus and the nonlinear parameter of the material. Since these materials are mostly water, they are assumed to be incompressible under typical experimental conditions in elasticity imaging. The Veronda-Westman model for strain energy density provided a good fit to all materials used in this study. Materials with a constant gelatin concentration (3.0% dry weight) but varying agar concentration (0.6-2.8% dry weight) demonstrated the same power law relationship between elastic modulus and agar concentration found for pure agar (1.89 +/- 0.02), consistent with percolation theory, and provided a consistent nonlinearity parameter of 4.5 +/- 0.3. The insights provided by this study will form the basis for stable elastography phantoms with stiffness and nonlinear stress/strain relationships in the background that differ from those in the target.

摘要

本文报道了用于弹性成像的仿射材料的发展。这些材料是专门设计的,以提供可以独立于材料的小应变成形剪切模量控制的非线性应力/应变关系。这些材料是琼脂和明胶凝胶的混合物。这些材料中的油滴分散体进一步控制材料的小应变成形剪切模量和非线性参数。由于这些材料大部分是水,因此在弹性成像的典型实验条件下,它们被假定为不可压缩的。应变能密度的Veronda-Westman 模型与本研究中使用的所有材料都非常吻合。具有恒定明胶浓度(3.0%干重)但琼脂浓度(0.6-2.8%干重)变化的材料表现出与纯琼脂(1.89 +/- 0.02)相同的弹性模量与琼脂浓度之间的幂律关系,符合渗流理论,并提供了一致的非线性参数 4.5 +/- 0.3。本研究提供的见解将为具有与目标不同的背景中的刚度和非线性应力/应变关系的稳定弹性成像仿射体提供基础。

相似文献

1
Nonlinear elastic behavior of phantom materials for elastography.
Phys Med Biol. 2010 May 7;55(9):2679-92. doi: 10.1088/0031-9155/55/9/017. Epub 2010 Apr 19.
2
Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.
J Mech Behav Biomed Mater. 2014 Jul;35:132-43. doi: 10.1016/j.jmbbm.2014.03.017. Epub 2014 Apr 1.
3
Quantitative imaging of nonlinear shear modulus by combining static elastography and shear wave elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Apr;59(4):833-9. doi: 10.1109/TUFFC.2012.2262.
4
Development of oil-in-gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography.
Ultrasound Med Biol. 2014 Jan;40(1):168-76. doi: 10.1016/j.ultrasmedbio.2013.08.020. Epub 2013 Oct 18.
5
A nonlinear elasticity phantom containing spherical inclusions.
Phys Med Biol. 2012 Aug 7;57(15):4787-804. doi: 10.1088/0031-9155/57/15/4787. Epub 2012 Jul 6.
6
Copolymer-in-oil phantom materials for elastography.
Ultrasound Med Biol. 2009 Jul;35(7):1185-97. doi: 10.1016/j.ultrasmedbio.2009.01.012. Epub 2009 May 7.
7
Stability of heterogeneous elastography phantoms made from oil dispersions in aqueous gels.
Ultrasound Med Biol. 2006 Feb;32(2):261-70. doi: 10.1016/j.ultrasmedbio.2005.10.009.
8
Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms.
IEEE Trans Biomed Eng. 2011 Jun;58(6):1706-14. doi: 10.1109/TBME.2011.2111419. Epub 2011 Feb 10.
9
Linear, weakly nonlinear and fully nonlinear models for soft tissues: which ones provide the most reliable estimations of the stiffness?
Philos Trans A Math Phys Eng Sci. 2022 Oct 17;380(2234):20210321. doi: 10.1098/rsta.2021.0321. Epub 2022 Aug 29.

引用本文的文献

1
Biomechanics of the Human Osteochondral Unit: A Systematic Review.
Materials (Basel). 2024 Apr 8;17(7):1698. doi: 10.3390/ma17071698.
2
A Force-Matched Approach to Large-Strain Nonlinearity in Elasticity Imaging for Breast Lesion Characterization.
IEEE Trans Biomed Eng. 2024 Jan;71(1):367-374. doi: 10.1109/TBME.2023.3305986. Epub 2023 Dec 22.
3
Bubble dynamics and speed of jets for needle-free injections produced by thermocavitation.
J Biomed Opt. 2023 Jul;28(7):075004. doi: 10.1117/1.JBO.28.7.075004. Epub 2023 Jul 21.
5
A data-driven approach to characterizing nonlinear elastic behavior of soft materials.
J Mech Behav Biomed Mater. 2022 Jun;130:105178. doi: 10.1016/j.jmbbm.2022.105178. Epub 2022 Mar 25.
6
Microbubble dynamics and jetting near tissue-phantom biointerfaces.
Biomed Opt Express. 2022 Jan 31;13(2):1061-1069. doi: 10.1364/BOE.449814. eCollection 2022 Feb 1.
7
Axially- and torsionally-polarized radially converging shear wave MRE in an anisotropic phantom made via Embedded Direct Ink Writing.
J Mech Behav Biomed Mater. 2021 Jul;119:104483. doi: 10.1016/j.jmbbm.2021.104483. Epub 2021 Mar 31.
8
Multiangle Long-Axis Lateral Illumination Photoacoustic Imaging Using Linear Array Transducer.
Sensors (Basel). 2020 Jul 21;20(14):4052. doi: 10.3390/s20144052.
9
C-Elastography: In Vitro Feasibility Phantom Study.
Ultrasound Med Biol. 2020 Jul;46(7):1738-1754. doi: 10.1016/j.ultrasmedbio.2020.02.005. Epub 2020 Apr 18.
10
Application of Acoustoelasticity to Evaluate Nonlinear Modulus in Ex Vivo Kidneys.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Feb;65(2):188-200. doi: 10.1109/TUFFC.2017.2781654.

本文引用的文献

1
Solution of the nonlinear elasticity imaging inverse problem: The incompressible case.
Comput Methods Appl Mech Eng. 2011 Mar 1;200(13-16):1406-1420. doi: 10.1016/j.cma.2010.12.018.
2
Measurement of the hyperelastic properties of 44 pathological ex vivo breast tissue samples.
Phys Med Biol. 2009 Apr 21;54(8):2557-69. doi: 10.1088/0031-9155/54/8/020. Epub 2009 Apr 6.
3
Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility.
Phys Med Biol. 2009 Mar 7;54(5):1191-207. doi: 10.1088/0031-9155/54/5/006. Epub 2009 Jan 30.
5
A parallelizable real-time motion tracking algorithm with applications to ultrasonic strain imaging.
Phys Med Biol. 2007 Jul 7;52(13):3773-90. doi: 10.1088/0031-9155/52/13/008. Epub 2007 May 29.
6
Stability of heterogeneous elastography phantoms made from oil dispersions in aqueous gels.
Ultrasound Med Biol. 2006 Feb;32(2):261-70. doi: 10.1016/j.ultrasmedbio.2005.10.009.
7
Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms.
Phys Med Biol. 2005 Dec 7;50(23):5597-618. doi: 10.1088/0031-9155/50/23/013. Epub 2005 Nov 16.
8
Nonlinear elasticity in biological gels.
Nature. 2005 May 12;435(7039):191-4. doi: 10.1038/nature03521.
9
Nonlinear elasticity imaging: theory and phantom study.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 May;51(5):532-9.
10
Measuring the nonlinear elastic properties of tissue-like phantoms.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Apr;51(4):410-9. doi: 10.1109/tuffc.2004.1295426.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验