Medical Physics Department, University of Wisconsin, Room 1005, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI 53705, USA.
Phys Med Biol. 2010 May 7;55(9):2679-92. doi: 10.1088/0031-9155/55/9/017. Epub 2010 Apr 19.
The development of phantom materials for elasticity imaging is reported in this paper. These materials were specifically designed to provide nonlinear stress/strain relationship that can be controlled independently of the small strain shear modulus of the material. The materials are mixtures of agar and gelatin gels. Oil droplet dispersions in these materials provide further control of the small strain shear modulus and the nonlinear parameter of the material. Since these materials are mostly water, they are assumed to be incompressible under typical experimental conditions in elasticity imaging. The Veronda-Westman model for strain energy density provided a good fit to all materials used in this study. Materials with a constant gelatin concentration (3.0% dry weight) but varying agar concentration (0.6-2.8% dry weight) demonstrated the same power law relationship between elastic modulus and agar concentration found for pure agar (1.89 +/- 0.02), consistent with percolation theory, and provided a consistent nonlinearity parameter of 4.5 +/- 0.3. The insights provided by this study will form the basis for stable elastography phantoms with stiffness and nonlinear stress/strain relationships in the background that differ from those in the target.
本文报道了用于弹性成像的仿射材料的发展。这些材料是专门设计的,以提供可以独立于材料的小应变成形剪切模量控制的非线性应力/应变关系。这些材料是琼脂和明胶凝胶的混合物。这些材料中的油滴分散体进一步控制材料的小应变成形剪切模量和非线性参数。由于这些材料大部分是水,因此在弹性成像的典型实验条件下,它们被假定为不可压缩的。应变能密度的Veronda-Westman 模型与本研究中使用的所有材料都非常吻合。具有恒定明胶浓度(3.0%干重)但琼脂浓度(0.6-2.8%干重)变化的材料表现出与纯琼脂(1.89 +/- 0.02)相同的弹性模量与琼脂浓度之间的幂律关系,符合渗流理论,并提供了一致的非线性参数 4.5 +/- 0.3。本研究提供的见解将为具有与目标不同的背景中的刚度和非线性应力/应变关系的稳定弹性成像仿射体提供基础。