Suppr超能文献

用于大鼠脑损伤微束放射治疗的体内粉红光束成像和快速对准程序。

In vivo pink-beam imaging and fast alignment procedure for rat brain lesion microbeam radiation therapy.

机构信息

European Synchrotron Radiation Facility, Grenoble, France.

出版信息

J Synchrotron Radiat. 2010 May;17(3):325-31. doi: 10.1107/S0909049510006667. Epub 2010 Mar 20.

Abstract

A fast 50 microm-accuracy alignment procedure has been developed for the radiosurgery of brain lesions in rats, using microbeam radiation therapy. In vivo imaging was performed using the pink beam (35-60 keV) produced by the ID17 wiggler at the ESRF opened at 120 mm and filtered. A graphical user interface has been developed in order to define the irradiation field size and to position the target with respect to the skull structures observed in X-ray images. The method proposed here allows tremendous time saving by skipping the swap from white beam to monochromatic beam and vice versa. To validate the concept, the somatosensory cortex or thalamus of GAERS rats were irradiated under several ports using this alignment procedure. The magnetic resonance images acquired after contrast agent injection showed that the irradiations were selectively performed in these two expected brain regions. Image-guided microbeam irradiations have therefore been realised for the first time ever, and, thanks to this new development, the ID17 biomedical beamline provides a major tool allowing brain radiosurgery trials on animal patients.

摘要

一种快速的 50 微米精度的对准程序已经开发出来,用于使用微束放射疗法对大鼠脑损伤进行放射外科治疗。使用 ESRF 的 ID17 扭摆器产生的粉红色光束(35-60keV)在 120mm 处打开并过滤进行体内成像。已经开发了一个图形用户界面,以便定义照射野的大小,并相对于在 X 射线图像中观察到的颅骨结构定位目标。通过跳过从白光束到单色束的交换以及反之,这里提出的方法可以极大地节省时间。为了验证该概念,使用这种对准程序在几个端口对 GAERS 大鼠的体感皮层或丘脑进行了照射。注射对比剂后获得的磁共振图像显示,照射是在这两个预期的大脑区域中选择性进行的。因此,首次实现了图像引导的微束照射,并且,由于这一新的发展,ID17 生物医学束线提供了一个主要工具,允许对动物患者进行脑放射外科试验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1af9/3025656/ccc17710e01d/s-17-00325-fig1.jpg

相似文献

1
In vivo pink-beam imaging and fast alignment procedure for rat brain lesion microbeam radiation therapy.
J Synchrotron Radiat. 2010 May;17(3):325-31. doi: 10.1107/S0909049510006667. Epub 2010 Mar 20.
2
In vivo pink-beam imaging and fast alignment procedure for rat brain tumor radiation therapy.
J Synchrotron Radiat. 2016 Jan;23(1):339-43. doi: 10.1107/S1600577515018561. Epub 2016 Jan 1.
3
Conformal image-guided microbeam radiation therapy at the ESRF biomedical beamline ID17.
Med Phys. 2016 Jun;43(6):3157-3167. doi: 10.1118/1.4950724.
6
Image guidance protocol for synchrotron microbeam radiation therapy.
J Synchrotron Radiat. 2016 Mar;23(2):566-73. doi: 10.1107/S1600577515022894. Epub 2016 Jan 28.
7
Multiscale pink-beam microCT imaging at the ESRF-ID17 biomedical beamline.
J Synchrotron Radiat. 2020 Sep 1;27(Pt 5):1347-1357. doi: 10.1107/S160057752000911X. Epub 2020 Aug 18.
9
Response of avian embryonic brain to spatially segmented x-ray microbeams.
Cell Mol Biol (Noisy-le-grand). 2001 May;47(3):485-93.

引用本文的文献

1
SyncMRT: a solution to image-guided synchrotron radiotherapy for quality assurance and pre-clinical trials.
J Synchrotron Radiat. 2022 Jul 1;29(Pt 4):1074-1084. doi: 10.1107/S1600577522004829. Epub 2022 Jun 7.
2
Synchrotron-generated microbeams induce hippocampal transections in rats.
Sci Rep. 2018 Jan 9;8(1):184. doi: 10.1038/s41598-017-18000-x.
3
γ-H2AX as a marker for dose deposition in the brain of wistar rats after synchrotron microbeam radiation.
PLoS One. 2015 Mar 23;10(3):e0119924. doi: 10.1371/journal.pone.0119924. eCollection 2015.
4
Nanotube x-ray for cancer therapy: a compact microbeam radiation therapy system for brain tumor treatment.
Expert Rev Anticancer Ther. 2014 Dec;14(12):1411-8. doi: 10.1586/14737140.2014.978293.
5
Image-guided microbeam irradiation to brain tumour bearing mice using a carbon nanotube x-ray source array.
Phys Med Biol. 2014 Mar 7;59(5):1283-303. doi: 10.1088/0031-9155/59/5/1283. Epub 2014 Feb 20.

本文引用的文献

1
Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks.
Int J Radiat Oncol Biol Phys. 2010 Dec 1;78(5):1503-12. doi: 10.1016/j.ijrobp.2010.06.021.
3
Synchrotron microbeam radiation therapy for rat brain tumor palliation-influence of the microbeam width at constant valley dose.
Phys Med Biol. 2009 Nov 7;54(21):6711-24. doi: 10.1088/0031-9155/54/21/017. Epub 2009 Oct 20.
4
New technology enables high precision multislit collimators for microbeam radiation therapy.
Rev Sci Instrum. 2009 Jul;80(7):074301. doi: 10.1063/1.3170035.
5
First trial of spatial and temporal fractionations of the delivered dose using synchrotron microbeam radiation therapy.
J Synchrotron Radiat. 2009 Jul;16(Pt 4):587-90. doi: 10.1107/S0909049509012485. Epub 2009 May 12.
6
Methacholine and ovalbumin challenges assessed by forced oscillations and synchrotron lung imaging.
Am J Respir Crit Care Med. 2009 Aug 15;180(4):296-303. doi: 10.1164/rccm.200808-1211OC. Epub 2009 May 29.
7
Identifying neural drivers with functional MRI: an electrophysiological validation.
PLoS Biol. 2008 Dec 23;6(12):2683-97. doi: 10.1371/journal.pbio.0060315.
8
Hearing preservation after gamma knife radiosurgery for vestibular schwannomas presenting with high-level hearing.
Neurosurgery. 2009 Feb;64(2):289-96; discussion 296. doi: 10.1227/01.NEU.0000338256.87936.7C.
9
Toward high-contrast breast CT at low radiation dose.
Radiology. 2008 Oct;249(1):321-7. doi: 10.1148/radiol.2491072129.
10
Brain tumor vessel response to synchrotron microbeam radiation therapy: a short-term in vivo study.
Phys Med Biol. 2008 Jul 7;53(13):3609-22. doi: 10.1088/0031-9155/53/13/015. Epub 2008 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验