Contreras Iván, Oviedo Silvia, Vettoretti Martina, Visentin Roberto, Vehí Josep
Institut d'Informàtica i Aplicacions, Parc Científic i Tecnològic de la Universitat de Girona, Girona, Spain.
Department of Information Engineering, University of Padova, Padova, Italy.
PLoS One. 2017 Nov 7;12(11):e0187754. doi: 10.1371/journal.pone.0187754. eCollection 2017.
The large patient variability in human physiology and the effects of variables such as exercise or meals challenge current prediction modeling techniques. Physiological models are very precise but they are typically complex and specific physiological knowledge is required. In contrast, data-based models allow the incorporation of additional inputs and accurately capture the relationship between these inputs and the outcome, but at the cost of losing the physiological meaning of the model. In this work, we designed a hybrid approach comprising physiological models for insulin and grammatical evolution, taking into account the clinical harm caused by deviations from the target blood glucose by using a penalizing fitness function based on the Clarke error grid. The prediction models were built using data obtained over 14 days for 100 virtual patients generated by the UVA/Padova T1D simulator. Midterm blood glucose was predicted for the 100 virtual patients using personalized models and different scenarios. The results obtained were promising; an average of 98.31% of the predictions fell in zones A and B of the Clarke error grid. Midterm predictions using personalized models are feasible when the configuration of grammatical evolution explored in this study is used. The study of new alternative models is important to move forward in the development of alarm-and-control applications for the management of type 1 diabetes and the customization of the patient's treatments. The hybrid approach can be adapted to predict short-term blood glucose values to detect continuous glucose-monitoring sensor errors and to estimate blood glucose values when the continuous glucose-monitoring system fails to provide them.
人类生理学中患者之间存在很大差异,以及运动或饮食等变量的影响,对当前的预测建模技术提出了挑战。生理模型非常精确,但通常很复杂,需要特定的生理学知识。相比之下,基于数据的模型允许纳入额外的输入,并准确捕捉这些输入与结果之间的关系,但代价是失去了模型的生理学意义。在这项工作中,我们设计了一种混合方法,包括胰岛素生理模型和语法进化,通过使用基于克拉克误差网格的惩罚适应度函数,考虑到偏离目标血糖所造成的临床危害。预测模型是使用由UVA/帕多瓦T1D模拟器生成的100名虚拟患者在14天内获得的数据构建的。使用个性化模型和不同场景对100名虚拟患者的中期血糖进行了预测。获得的结果很有前景;平均98.31%的预测落在克拉克误差网格的A区和B区。当使用本研究中探索的语法进化配置时,使用个性化模型进行中期预测是可行的。研究新的替代模型对于推进1型糖尿病管理的报警和控制应用以及患者治疗的定制化发展非常重要。这种混合方法可以进行调整,以预测短期血糖值,检测连续血糖监测传感器的误差,并在连续血糖监测系统无法提供血糖值时估计血糖值。