Suppr超能文献

一种用于在稳定浓度梯度下定量细菌趋化性的微流控装置。

A microfluidic device for quantifying bacterial chemotaxis in stable concentration gradients.

作者信息

Englert Derek L, Manson Michael D, Jayaraman Arul

机构信息

McFerrin Department of Chemical Engineering, Texas A&M University, TX, USA.

出版信息

J Vis Exp. 2010 Apr 19(38):1779. doi: 10.3791/1779.

Abstract

Chemotaxis allows bacteria to approach sources of attractant chemicals or to avoid sources of repellent chemicals. Bacteria constantly monitor the concentration of specific chemoeffectors by comparing the current concentration to the concentration detected a few seconds earlier. This comparison determines the net direction of movement. Although multiple, competing gradients often coexist in nature, conventional approaches for investigating bacterial chemotaxis are suboptimal for quantifying migration in response to concentration gradients of attractants and repellents. Here, we describe the development of a microfluidic chemotaxis model for presenting precise and stable concentration gradients of chemoeffectors to bacteria and quantitatively investigating their response to the applied gradient. The device is versatile in that concentration gradients of any desired absolute concentration and gradient strength can be easily generated by diffusive mixing. The device is demonstrated using the response of Escherichia coli RP437 to gradients of amino acids and nickel ions.

摘要

趋化作用使细菌能够接近吸引性化学物质的来源或避开排斥性化学物质的来源。细菌通过将当前浓度与几秒前检测到的浓度进行比较,不断监测特定化学效应物的浓度。这种比较决定了运动的净方向。尽管自然界中常常同时存在多个相互竞争的梯度,但传统的研究细菌趋化作用的方法在定量研究细菌对吸引剂和排斥剂浓度梯度的迁移反应方面并不理想。在此,我们描述了一种微流控趋化模型的开发,该模型用于向细菌呈现精确且稳定的化学效应物浓度梯度,并定量研究它们对所施加梯度的反应。该装置具有通用性,因为通过扩散混合可以轻松生成任何所需绝对浓度和梯度强度的浓度梯度。利用大肠杆菌RP437对氨基酸和镍离子梯度的反应对该装置进行了演示。

相似文献

2
Investigation of bacterial chemotaxis in flow-based microfluidic devices.
Nat Protoc. 2010 May;5(5):864-72. doi: 10.1038/nprot.2010.18. Epub 2010 Apr 15.
3
Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients.
Appl Environ Microbiol. 2009 Jul;75(13):4557-64. doi: 10.1128/AEM.02952-08. Epub 2009 May 1.
4
5
Multiplexed microfluidic screening of bacterial chemotaxis.
Elife. 2023 Jul 24;12:e85348. doi: 10.7554/eLife.85348.
7
A mathematical model for Escherichia coli chemotaxis to competing stimuli.
Biotechnol Bioeng. 2021 Dec;118(12):4678-4686. doi: 10.1002/bit.27930. Epub 2021 Sep 8.
8
Escherichia coli chemotaxis to competing stimuli in a microfluidic device with a constant gradient.
Biotechnol Bioeng. 2022 Sep;119(9):2564-2573. doi: 10.1002/bit.28161. Epub 2022 Jun 30.
9
Pump-less static microfluidic device for analysis of chemotaxis of Pseudomonas aeruginosa using wetting and capillary action.
Biosens Bioelectron. 2013 Sep 15;47:278-84. doi: 10.1016/j.bios.2013.03.031. Epub 2013 Mar 26.
10
Microfluidic monitoring of Pseudomonas aeruginosa chemotaxis under the continuous chemical gradient.
Biosens Bioelectron. 2010 Oct 15;26(2):351-6. doi: 10.1016/j.bios.2010.08.006. Epub 2010 Aug 7.

引用本文的文献

1
High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology.
Chem Rev. 2021 Apr 28;121(8):4561-4677. doi: 10.1021/acs.chemrev.0c00752. Epub 2021 Mar 11.
2
Tracking Root Interactions System (TRIS) Experiment and Quality Control.
Bio Protoc. 2019 Apr 20;9(8):e3211. doi: 10.21769/BioProtoc.3211.
3
A simple and reusable bilayer membrane-based microfluidic device for the study of gradient-mediated bacterial behaviors.
Biomicrofluidics. 2017 Aug 22;11(4):044114. doi: 10.1063/1.4993438. eCollection 2017 Jul.
5
Live imaging of root-bacteria interactions in a microfluidics setup.
Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4549-4554. doi: 10.1073/pnas.1618584114. Epub 2017 Mar 27.
6
Enhancement of Swimming Speed Leads to a More-Efficient Chemotactic Response to Repellent.
Appl Environ Microbiol. 2015 Dec 11;82(4):1205-1214. doi: 10.1128/AEM.03397-15. Print 2016 Feb 15.

本文引用的文献

1
Microfluidic techniques for the analysis of bacterial chemotaxis.
Methods Mol Biol. 2009;571:1-23. doi: 10.1007/978-1-60761-198-1_1.
2
Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients.
Appl Environ Microbiol. 2009 Jul;75(13):4557-64. doi: 10.1128/AEM.02952-08. Epub 2009 May 1.
3
A sensitive, versatile microfluidic assay for bacterial chemotaxis.
Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5449-54. doi: 10.1073/pnas.0931258100. Epub 2003 Apr 18.
4
Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing.
Anal Chem. 2002 Apr 1;74(7):1537-45. doi: 10.1021/ac010938q.
5
Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration.
Microbiology (Reading). 2001 May;147(Pt 5):1383-1391. doi: 10.1099/00221287-147-5-1383.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验