文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Nanodrugs alleviate acute kidney injury: Manipulate RONS at kidney.

作者信息

Chen Qiaohui, Nan Yayun, Yang Yuqi, Xiao Zuoxiu, Liu Min, Huang Jia, Xiang Yuting, Long Xingyu, Zhao Tianjiao, Wang Xiaoyuan, Huang Qiong, Ai Kelong

机构信息

Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, PR China.

Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, PR China.

出版信息

Bioact Mater. 2022 Sep 29;22:141-167. doi: 10.1016/j.bioactmat.2022.09.021. eCollection 2023 Apr.


DOI:10.1016/j.bioactmat.2022.09.021
PMID:36203963
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9526023/
Abstract

Currently, there are no clinical drugs available to treat acute kidney injury (AKI). Given the high prevalence and high mortality rate of AKI, the development of drugs to effectively treat AKI is a huge unmet medical need and a research hotspot. Although existing evidence fully demonstrates that reactive oxygen and nitrogen species (RONS) burst at the AKI site is a major contributor to AKI progression, the heterogeneity, complexity, and unique physiological structure of the kidney make most antioxidant and anti-inflammatory small molecule drugs ineffective because of the lack of kidney targeting and side effects. Recently, nanodrugs with intrinsic kidney targeting through the control of size, shape, and surface properties have opened exciting prospects for the treatment of AKI. Many antioxidant nanodrugs have emerged to address the limitations of current AKI treatments. In this review, we systematically summarized for the first time about the emerging nanodrugs that exploit the pathological and physiological features of the kidney to overcome the limitations of traditional small-molecule drugs to achieve high AKI efficacy. First, we analyzed the pathological structural characteristics of AKI and the main pathological mechanism of AKI: hypoxia, harmful substance accumulation-induced RONS burst at the renal site despite the multifactorial initiation and heterogeneity of AKI. Subsequently, we introduced the strategies used to improve renal targeting and reviewed advances of nanodrugs for AKI: nano-RONS-sacrificial agents, antioxidant nanozymes, and nanocarriers for antioxidants and anti-inflammatory drugs. These nanodrugs have demonstrated excellent therapeutic effects, such as greatly reducing oxidative stress damage, restoring renal function, and low side effects. Finally, we discussed the challenges and future directions for translating nanodrugs into clinical AKI treatment.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/2d4c658e2efa/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/54e34ce90f7d/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/00f831707a0c/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/8e19739a560e/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/9397e59957f0/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/474e891ffff6/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/852acda31c46/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/8236890ff3d2/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/e765fb3e404a/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/cb53a44b72b5/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/68b67c225500/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/75d66e602406/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/bec7903705eb/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/c6a8fa87ad8a/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/3e222b874b00/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/b1b826e29f07/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/741f7fe9e8ff/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/51cb4fb6e4cb/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/23321b373198/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/2d4c658e2efa/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/54e34ce90f7d/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/00f831707a0c/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/8e19739a560e/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/9397e59957f0/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/474e891ffff6/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/852acda31c46/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/8236890ff3d2/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/e765fb3e404a/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/cb53a44b72b5/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/68b67c225500/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/75d66e602406/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/bec7903705eb/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/c6a8fa87ad8a/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/3e222b874b00/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/b1b826e29f07/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/741f7fe9e8ff/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/51cb4fb6e4cb/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/23321b373198/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2767/9526023/2d4c658e2efa/gr18.jpg

相似文献

[1]
Nanodrugs alleviate acute kidney injury: Manipulate RONS at kidney.

Bioact Mater. 2022-9-29

[2]
Antioxidative 0-dimensional nanodrugs overcome obstacles in AKI antioxidant therapy.

J Mater Chem B. 2023-8-30

[3]
Reactive oxygen/nitrogen species scavenging and inflammatory regulation by renal-targeted bio-inspired rhodium nanozymes for acute kidney injury theranostics.

J Colloid Interface Sci. 2024-5-15

[4]
Harnessing reactive oxygen/nitrogen species and inflammation: Nanodrugs for liver injury.

Mater Today Bio. 2022-2-8

[5]
Recent Advances in Nanomaterials for the Treatment of Acute Kidney Injury.

ACS Appl Mater Interfaces. 2024-3-13

[6]
Passively-targeted mitochondrial tungsten-based nanodots for efficient acute kidney injury treatment.

Bioact Mater. 2022-9-14

[7]
Natural ursolic acid based self-therapeutic polymer as nanocarrier to deliver natural resveratrol for natural therapy of acute kidney injury.

J Nanobiotechnology. 2023-12-17

[8]
Biodegradable Self-Assembled Ultrasmall Nanodots as Reactive Oxygen/Nitrogen Species Scavengers for Theranostic Application in Acute Kidney Injury.

Small. 2021-2

[9]
Engineered nanodrug targeting oxidative stress for treatment of acute kidney injury.

Exploration (Beijing). 2023-7-20

[10]
Multi-enzyme mimetic ultrasmall iridium nanozymes as reactive oxygen/nitrogen species scavengers for acute kidney injury management.

Biomaterials. 2021-4

引用本文的文献

[1]
Nanomedicine-Driven Modulation of Reductive Stress for Cancer Therapy.

Adv Sci (Weinh). 2025-8

[2]
Angiogenesis in rheumatoid Arthritis: Pathological characterization, pathogenic mechanisms, and nano-targeted therapeutic strategies.

Bioact Mater. 2025-5-2

[3]
Therapeutic potential of voltage-dependent potassium channel subtype 1.3 blockade in alleviating macrophage-related renal inflammation and fibrogenesis.

Cell Death Discov. 2025-5-5

[4]
Ultrasmall platinum single-atom enzyme alleviates oxidative stress and macrophage polarization induced by acute kidney ischemia-reperfusion injury through inhibition of cell death storm.

J Nanobiotechnology. 2025-4-27

[5]
Renal-clearable and mitochondria-targeted metal-engineered carbon dot nanozymes for regulating mitochondrial oxidative stress in acute kidney injury.

Mater Today Bio. 2025-3-28

[6]
Metal-phenolic nanozyme as a ferroptosis inhibitor for alleviating cisplatin-induced acute kidney injury.

Front Pharmacol. 2025-4-1

[7]
Antioxidant scaffolds for enhanced bone regeneration: recent advances and challenges.

Biomed Eng Online. 2025-4-8

[8]
Advances in Nano-Immunomodulatory Systems for the Treatment of Acute Kidney Injury.

Adv Sci (Weinh). 2025-5

[9]
Nanomaterials for targeted therapy of kidney diseases: Strategies and advances.

Mater Today Bio. 2025-1-29

[10]
Ultra-small curcumin-ruthenium coordination polymer nanodots prevent renal ischemia-reperfusion injury and the progression to chronic kidney disease.

Front Bioeng Biotechnol. 2025-1-14

本文引用的文献

[1]
Nanomedicine Strategies for Heating "Cold" Ovarian Cancer (OC): Next Evolution in Immunotherapy of OC.

Adv Sci (Weinh). 2022-10

[2]
The pathological role of damaged organelles in renal tubular epithelial cells in the progression of acute kidney injury.

Cell Death Discov. 2022-5-2

[3]
Emerging early diagnostic methods for acute kidney injury.

Theranostics. 2022

[4]
Increased Heparanase Levels in Urine during Acute Puumala Orthohantavirus Infection Are Associated with Disease Severity.

Viruses. 2022-2-22

[5]
Mitochondrial Oxidative Stress and Cell Death in Podocytopathies.

Biomolecules. 2022-3-4

[6]
Inhibition of endothelial Nox2 activation by LMH001 protects mice from angiotensin II-induced vascular oxidative stress, hypertension and aortic aneurysm.

Redox Biol. 2022-5

[7]
Promising Therapeutic Candidate for Myocardial Ischemia/Reperfusion Injury: What Are the Possible Mechanisms and Roles of Phytochemicals?

Front Cardiovasc Med. 2022-2-17

[8]
Harnessing reactive oxygen/nitrogen species and inflammation: Nanodrugs for liver injury.

Mater Today Bio. 2022-2-8

[9]
Renal Nano-drug delivery for acute kidney Injury: Current status and future perspectives.

J Control Release. 2022-3

[10]
Kidney-Targeted Redox Scavenger Therapy Prevents Cisplatin-Induced Acute Kidney Injury.

Front Pharmacol. 2022-1-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索