Suppr超能文献

主动运输的设计必须非常复杂:肌球蛋白和 Ena/VASP 可能在丝状伪足中的 G-肌动蛋白运输中发挥作用。

Design of active transport must be highly intricate: a possible role of myosin and Ena/VASP for G-actin transport in filopodia.

机构信息

Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, USA.

出版信息

Biophys J. 2010 Apr 21;98(8):1439-48. doi: 10.1016/j.bpj.2009.12.4325.

Abstract

Recent modeling of filopodia--the actin-based cell organelles employed for sensing and motility--reveals that one of the key limiting factors of filopodial length is diffusional transport of G-actin monomers to the polymerizing barbed ends. We have explored the possibility of active transport of G-actin by myosin motors, which would be an expected biological response to overcome the limitation of a diffusion-based process. We found that in a straightforward implementation of active transport the increase in length was unimpressive, < or = 30%, due to sequestering of G-actin by freely diffusing motors. However, artificially removing motor sequestration reactions led to approximately threefold increases in filopodial length, with the transport being mainly limited by the motors failing to detach from the filaments near the tip, clogging the cooperative conveyer belt dynamics. Making motors sterically transparent led to a qualitative change of the dynamics to a different regime of steady growth without a stationary length. Having identified sequestration and clogging as ubiquitous constraints to motor-driven transport, we devised and tested a speculative means to sidestep these limitations in filopodia by employing cross-linking and putative scaffolding roles of Ena/VASP proteins. We conclude that a naïve design of molecular-motor-based active transport would almost always be inefficient--an intricately organized kinetic scheme, with finely tuned rate constants, is required to achieve high-flux transport.

摘要

最近对丝状伪足(用于感知和运动的肌动蛋白细胞器官)的建模表明,丝状伪足长度的一个关键限制因素是 G 肌动蛋白单体向聚合的快末端扩散运输。我们已经探索了肌球蛋白马达主动运输 G 肌动蛋白的可能性,这将是克服基于扩散过程的限制的预期生物学反应。我们发现,在主动运输的直接实现中,由于自由扩散的马达隔离 G 肌动蛋白,长度的增加不明显,<或=30%。然而,人为地去除马达隔离反应导致丝状伪足长度增加约三倍,运输主要受到靠近尖端的纤维上的马达无法脱离的限制,堵塞了协作输送带动力学。使马达具有空间透明性导致动力学发生定性变化,进入稳定生长而没有静止长度的不同状态。由于确定了隔离和堵塞是马达驱动运输的普遍限制,我们设计并测试了一种推测性的方法,通过交联和 Ena/VASP 蛋白的假定支架作用来规避丝状伪足中的这些限制。我们得出结论,基于分子马达的主动运输的天真设计几乎总是效率低下的——需要复杂的组织动力学方案,精细调整速率常数,以实现高通量运输。

相似文献

2
Ena/VASP proteins have an anti-capping independent function in filopodia formation.
Mol Biol Cell. 2007 Jul;18(7):2579-91. doi: 10.1091/mbc.e06-11-0990. Epub 2007 May 2.
4
VASP-mediated actin dynamics activate and recruit a filopodia myosin.
Elife. 2021 May 27;10:e68082. doi: 10.7554/eLife.68082.
5
Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility.
Cell. 2002 May 17;109(4):509-21. doi: 10.1016/s0092-8674(02)00731-6.
6
Initiation and disassembly of filopodia tip complexes containing VASP and lamellipodin.
Mol Biol Cell. 2020 Aug 15;31(18):2021-2034. doi: 10.1091/mbc.E20-04-0270. Epub 2020 Jun 24.
7
Ena/VASP regulates mDia2-initiated filopodial length, dynamics, and function.
Mol Biol Cell. 2014 Sep 1;25(17):2604-19. doi: 10.1091/mbc.E14-02-0712. Epub 2014 Jul 2.
9
Ena/VASP Enabled is a highly processive actin polymerase tailored to self-assemble parallel-bundled F-actin networks with Fascin.
Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4121-6. doi: 10.1073/pnas.1322093111. Epub 2014 Mar 3.
10
The bundling activity of vasodilator-stimulated phosphoprotein is required for filopodium formation.
Proc Natl Acad Sci U S A. 2006 May 16;103(20):7694-9. doi: 10.1073/pnas.0511243103. Epub 2006 May 4.

引用本文的文献

1
Multi-Grid Reaction-Diffusion Master Equation: Applications to Morphogen Gradient Modelling.
Bull Math Biol. 2024 Nov 27;87(1):6. doi: 10.1007/s11538-024-01377-y.
2
Remarkable structural transformations of actin bundles are driven by their initial polarity, motor activity, crosslinking, and filament treadmilling.
PLoS Comput Biol. 2019 Jul 9;15(7):e1007156. doi: 10.1371/journal.pcbi.1007156. eCollection 2019 Jul.
4
Physical model for the geometry of actin-based cellular protrusions.
Biophys J. 2014 Aug 5;107(3):576-587. doi: 10.1016/j.bpj.2014.05.040.
5
Theory of active transport in filopodia and stereocilia.
Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):10849-54. doi: 10.1073/pnas.1200160109. Epub 2012 Jun 18.
6
Myosin-X: a MyTH-FERM myosin at the tips of filopodia.
J Cell Sci. 2011 Nov 15;124(Pt 22):3733-41. doi: 10.1242/jcs.023549.
8
The Eps8/IRSp53/VASP network differentially controls actin capping and bundling in filopodia formation.
PLoS Comput Biol. 2011 Jul;7(7):e1002088. doi: 10.1371/journal.pcbi.1002088. Epub 2011 Jul 21.
9
Robust patterns in the stochastic organization of filopodia.
BMC Cell Biol. 2010 Nov 17;11:86. doi: 10.1186/1471-2121-11-86.

本文引用的文献

1
Molecular noise of capping protein binding induces macroscopic instability in filopodial dynamics.
Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11570-5. doi: 10.1073/pnas.0812746106. Epub 2009 Jun 25.
2
A novel form of motility in filopodia revealed by imaging myosin-X at the single-molecule level.
Curr Biol. 2009 Jun 9;19(11):967-73. doi: 10.1016/j.cub.2009.03.067. Epub 2009 Apr 23.
3
Myosin IIIa boosts elongation of stereocilia by transporting espin 1 to the plus ends of actin filaments.
Nat Cell Biol. 2009 Apr;11(4):443-50. doi: 10.1038/ncb1851. Epub 2009 Mar 15.
4
F- and G-actin concentrations in lamellipodia of moving cells.
PLoS One. 2009;4(3):e4810. doi: 10.1371/journal.pone.0004810. Epub 2009 Mar 11.
5
The role of formins in filopodia formation.
Biochim Biophys Acta. 2010 Feb;1803(2):191-200. doi: 10.1016/j.bbamcr.2008.12.018. Epub 2009 Jan 3.
6
Protein localization by actin treadmilling and molecular motors regulates stereocilia shape and treadmilling rate.
Biophys J. 2008 Dec 15;95(12):5706-18. doi: 10.1529/biophysj.108.143453. Epub 2008 Oct 20.
7
A myosin motor that selects bundled actin for motility.
Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9616-20. doi: 10.1073/pnas.0802592105. Epub 2008 Jul 3.
8
Quantitative analysis of G-actin transport in motile cells.
Biophys J. 2008 Aug;95(4):1627-38. doi: 10.1529/biophysj.108.130096. Epub 2008 May 23.
9
The stochastic dynamics of filopodial growth.
Biophys J. 2008 May 15;94(10):3839-52. doi: 10.1529/biophysj.107.123778. Epub 2008 Jan 30.
10
Purely stochastic binary decisions in cell signaling models without underlying deterministic bistabilities.
Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):18958-63. doi: 10.1073/pnas.0706110104. Epub 2007 Nov 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验