Suppr超能文献

沿丝状伪足的蛋白质通量作为理解生长-回缩动力学的框架:扩散和主动运输之间的相互作用。

Protein fluxes along the filopodium as a framework for understanding the growth-retraction dynamics: the interplay between diffusion and active transport.

机构信息

Department of Chemistry and Institute for Physical Science and Technology, University of Maryland, College Park, MD USA.

出版信息

Cell Adh Migr. 2011 Sep-Oct;5(5):448-56. doi: 10.4161/cam.5.5.17868.

Abstract

We present a picture of filopodial growth and retraction from physics perspective, where we emphasize the significance of the role played by protein fluxes due to spatially extended nature of the filopodium. We review a series of works, which used stochastic simulations and mean field analytical modeling to find the concentration profile of G-actin inside a filopodium, which, in turn, determines the stationary filopodial length. In addition to extensively reviewing the prior works, we also report some new results on the role of active transport in regulating the length of filopodia. We model a filopodium where delivery of actin monomers towards the tip can occur both through passive diffusion and active transport by myosin motors. We found that the concentration profile of G-actin along the filopodium is rather non-trivial, containing a narrow minimum near the base followed by a broad maximum. For efficient enough actin transport, this non-monotonous shape is expected to occur under a broad set of conditions. We also raise the issue of slow approach to the stationary length and the possibility of multiple steady state solutions.

摘要

我们从物理学的角度展示了丝状伪足的生长和回缩的情况,强调了由于丝状伪足的空间扩展性质,蛋白质通量所起的作用的重要性。我们回顾了一系列的工作,这些工作使用随机模拟和平均场分析模型来找到丝状伪足内 G-肌动蛋白的浓度分布,这反过来又决定了丝状伪足的静止长度。除了广泛回顾之前的工作外,我们还报告了一些关于主动运输在调节丝状伪足长度方面的新结果。我们对丝状伪足进行建模,其中肌球蛋白马达可以通过被动扩散和主动运输向尖端输送肌动蛋白单体。我们发现,G-肌动蛋白在丝状伪足上的浓度分布相当复杂,在基部附近有一个狭窄的最小值,然后是一个宽的最大值。对于足够有效的肌动蛋白运输,在广泛的条件下预计会出现这种非单调形状。我们还提出了缓慢接近静止长度和存在多个稳定状态解的可能性的问题。

相似文献

2
Theory of active transport in filopodia and stereocilia.纤毛和静纤毛中主动运输的理论。
Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):10849-54. doi: 10.1073/pnas.1200160109. Epub 2012 Jun 18.
4
The stochastic dynamics of filopodial growth.丝状伪足生长的随机动力学
Biophys J. 2008 May 15;94(10):3839-52. doi: 10.1529/biophysj.107.123778. Epub 2008 Jan 30.
5
Modelling the effect of myosin X motors on filopodia growth.模拟肌球蛋白X马达对丝状伪足生长的影响。
Phys Biol. 2014 Feb;11(1):016005. doi: 10.1088/1478-3975/11/1/016005. Epub 2014 Jan 27.
9
The physics of filopodial protrusion.丝状伪足突出的物理学
Biophys J. 2005 Aug;89(2):782-95. doi: 10.1529/biophysj.104.056515. Epub 2005 May 6.

本文引用的文献

1
On the mechanical stabilization of filopodia.关于片状伪足的力学稳定化。
Biophys J. 2011 Mar 16;100(6):1428-37. doi: 10.1016/j.bpj.2011.01.069.
3
Kinesin's light chains inhibit the head- and microtubule-binding activity of its tail.驱动蛋白轻链抑制其尾部与微管的结合活性。
Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11781-6. doi: 10.1073/pnas.1005854107. Epub 2010 Jun 14.
5
Effect of capping protein on a growing filopodium.盖帽蛋白对生长丝状伪足的影响。
Biophys J. 2010 Apr 7;98(7):1139-48. doi: 10.1016/j.bpj.2009.11.053.
6
Control of actin filament treadmilling in cell motility.细胞运动中肌动蛋白丝的 treadmilling 控制。
Annu Rev Biophys. 2010;39:449-70. doi: 10.1146/annurev-biophys-051309-103849.
7
Functional versus folding landscapes: the same yet different.功能与折叠景观:相同又不同。
Curr Opin Struct Biol. 2010 Feb;20(1):16-22. doi: 10.1016/j.sbi.2009.12.010. Epub 2010 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验