Department of Chemistry and Institute for Physical Science and Technology, University of Maryland, College Park, MD USA.
Cell Adh Migr. 2011 Sep-Oct;5(5):448-56. doi: 10.4161/cam.5.5.17868.
We present a picture of filopodial growth and retraction from physics perspective, where we emphasize the significance of the role played by protein fluxes due to spatially extended nature of the filopodium. We review a series of works, which used stochastic simulations and mean field analytical modeling to find the concentration profile of G-actin inside a filopodium, which, in turn, determines the stationary filopodial length. In addition to extensively reviewing the prior works, we also report some new results on the role of active transport in regulating the length of filopodia. We model a filopodium where delivery of actin monomers towards the tip can occur both through passive diffusion and active transport by myosin motors. We found that the concentration profile of G-actin along the filopodium is rather non-trivial, containing a narrow minimum near the base followed by a broad maximum. For efficient enough actin transport, this non-monotonous shape is expected to occur under a broad set of conditions. We also raise the issue of slow approach to the stationary length and the possibility of multiple steady state solutions.
我们从物理学的角度展示了丝状伪足的生长和回缩的情况,强调了由于丝状伪足的空间扩展性质,蛋白质通量所起的作用的重要性。我们回顾了一系列的工作,这些工作使用随机模拟和平均场分析模型来找到丝状伪足内 G-肌动蛋白的浓度分布,这反过来又决定了丝状伪足的静止长度。除了广泛回顾之前的工作外,我们还报告了一些关于主动运输在调节丝状伪足长度方面的新结果。我们对丝状伪足进行建模,其中肌球蛋白马达可以通过被动扩散和主动运输向尖端输送肌动蛋白单体。我们发现,G-肌动蛋白在丝状伪足上的浓度分布相当复杂,在基部附近有一个狭窄的最小值,然后是一个宽的最大值。对于足够有效的肌动蛋白运输,在广泛的条件下预计会出现这种非单调形状。我们还提出了缓慢接近静止长度和存在多个稳定状态解的可能性的问题。