Suppr超能文献

N-端α-螺旋非依赖性膜相互作用促进腺病毒蛋白 VI 诱导膜管形成。

N-terminal α-helix-independent membrane interactions facilitate adenovirus protein VI induction of membrane tubule formation.

机构信息

Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA.

出版信息

Virology. 2010 Dec 5;408(1):31-8. doi: 10.1016/j.virol.2010.08.033. Epub 2010 Sep 25.

Abstract

Adenovirus disrupts endosomal membranes during cell entry. The membrane lytic capsid protein VI (pVI) facilitates entry by fragmenting membranes. Although an N-terminal amphipathic α-helix (VI-Φ) possesses similar membrane affinity as pVI, truncated protein lacking VI-Φ (VIΔ54) still possesses moderate membrane affinity. We demonstrate that incorporation of nickel-NTA lipids in membranes enhances the membrane affinity and the membrane lytic activity of VIΔ54. We also demonstrate that 3 predicted pVI α-helices within residues 54-114 associate with membranes, sitting roughly parallel to the membrane surface. His-tagged VIΔ54 is capable of fragmenting membranes similar to pVI and the VI-Φ peptide. Interestingly, neither VI-Φ nor His-tagged VIΔ54 can induce tubule formation in giant lipid vesicles as observed for pVI. These data suggest cooperativity between the amphipathic α-helix and residues in VIΔ54 to induce positive membrane curvature and tubule formation. These results provide additional details regarding the mechanism of nonenveloped virus membrane penetration.

摘要

腺病毒在细胞进入过程中破坏内体膜。膜裂解衣壳蛋白 VI(pVI)通过分裂膜促进进入。尽管 N 端两亲性α-螺旋(VI-Φ)具有与 pVI 相似的膜亲和力,但缺乏 VI-Φ的截断蛋白(VIΔ54)仍具有中等的膜亲和力。我们证明,将镍-NTA 脂质掺入膜中可增强 VIΔ54 的膜亲和力和膜裂解活性。我们还证明,残基 54-114 内的 3 个预测的 pVI α-螺旋与膜结合,大致平行于膜表面。His 标记的 VIΔ54 能够像 pVI 和 VI-Φ 肽一样裂解膜。有趣的是,既不是 VI-Φ 也不是 His 标记的 VIΔ54 能够诱导巨脂质囊泡中管状结构的形成,如 pVI 观察到的那样。这些数据表明,两亲性α-螺旋和 VIΔ54 中的残基之间的协同作用诱导正膜曲率和管状结构的形成。这些结果提供了有关无包膜病毒膜穿透机制的更多细节。

相似文献

1
N-terminal α-helix-independent membrane interactions facilitate adenovirus protein VI induction of membrane tubule formation.
Virology. 2010 Dec 5;408(1):31-8. doi: 10.1016/j.virol.2010.08.033. Epub 2010 Sep 25.
2
An N-terminal domain of adenovirus protein VI fragments membranes by inducing positive membrane curvature.
Virology. 2010 Jun 20;402(1):11-9. doi: 10.1016/j.virol.2010.03.043. Epub 2010 Apr 20.
3
The amphipathic helix of adenovirus capsid protein VI contributes to penton release and postentry sorting.
J Virol. 2015 Feb;89(4):2121-35. doi: 10.1128/JVI.02257-14. Epub 2014 Dec 3.
4
Co-option of Membrane Wounding Enables Virus Penetration into Cells.
Cell Host Microbe. 2015 Jul 8;18(1):75-85. doi: 10.1016/j.chom.2015.06.006.
5
Adenovirus protein VI mediates membrane disruption following capsid disassembly.
J Virol. 2005 Feb;79(4):1992-2000. doi: 10.1128/JVI.79.4.1992-2000.2005.
6
A Single Maturation Cleavage Site in Adenovirus Impacts Cell Entry and Capsid Assembly.
J Virol. 2015 Oct 21;90(1):521-32. doi: 10.1128/JVI.02014-15. Print 2016 Jan 1.
7
Structure of a Cell Entry Defective Human Adenovirus Provides Insights into Precursor Proteins and Capsid Maturation.
J Mol Biol. 2022 Jan 30;434(2):167350. doi: 10.1016/j.jmb.2021.167350. Epub 2021 Nov 10.
8
Disulfide-bond formation by a single cysteine mutation in adenovirus protein VI impairs capsid release and membrane lysis.
Virology. 2012 Jun 20;428(1):41-7. doi: 10.1016/j.virol.2012.03.024. Epub 2012 Apr 17.
9
Dissecting the functional domains of a nonenveloped virus membrane penetration peptide.
J Virol. 2009 Jul;83(13):6929-33. doi: 10.1128/JVI.02299-08. Epub 2009 Apr 15.

引用本文的文献

1
Complex regulation of mitochondrial signaling by human adenovirus minor capsid protein VI.
J Virol. 2024 Jul 23;98(7):e0035624. doi: 10.1128/jvi.00356-24. Epub 2024 Jun 5.
2
The Functionality of Membrane-Inserting Proteins and Peptides: Curvature Sensing, Generation, and Pore Formation.
J Membr Biol. 2023 Dec;256(4-6):343-372. doi: 10.1007/s00232-023-00289-7. Epub 2023 Aug 31.
4
CRM1 Promotes Capsid Disassembly and Nuclear Envelope Translocation of Adenovirus Independently of Its Export Function.
J Virol. 2022 Feb 9;96(3):e0127321. doi: 10.1128/JVI.01273-21. Epub 2021 Nov 10.
5
Functional roles of the membrane-associated AAV protein MAAP.
Sci Rep. 2021 Nov 4;11(1):21698. doi: 10.1038/s41598-021-01220-7.
7
How non-enveloped viruses hijack host machineries to cause infection.
Adv Virus Res. 2019;104:97-122. doi: 10.1016/bs.aivir.2019.05.002. Epub 2019 Jul 2.
8
Adenovirus flow in host cell networks.
Open Biol. 2019 Feb 28;9(2):190012. doi: 10.1098/rsob.190012.
9
A Single Maturation Cleavage Site in Adenovirus Impacts Cell Entry and Capsid Assembly.
J Virol. 2015 Oct 21;90(1):521-32. doi: 10.1128/JVI.02014-15. Print 2016 Jan 1.
10
Adenovirus membrane penetration: Tickling the tail of a sleeping dragon.
Virology. 2015 May;479-480:591-9. doi: 10.1016/j.virol.2015.03.006. Epub 2015 Mar 19.

本文引用的文献

1
An N-terminal domain of adenovirus protein VI fragments membranes by inducing positive membrane curvature.
Virology. 2010 Jun 20;402(1):11-9. doi: 10.1016/j.virol.2010.03.043. Epub 2010 Apr 20.
2
Effect of mutations in VP5 hydrophobic loops on rotavirus cell entry.
J Virol. 2010 Jun;84(12):6200-7. doi: 10.1128/JVI.02461-09. Epub 2010 Apr 7.
3
A capsid-encoded PPxY-motif facilitates adenovirus entry.
PLoS Pathog. 2010 Mar 19;6(3):e1000808. doi: 10.1371/journal.ppat.1000808.
4
MPEx: a tool for exploring membrane proteins.
Protein Sci. 2009 Dec;18(12):2624-8. doi: 10.1002/pro.256.
5
Requirements for the formation of membrane pores by the reovirus myristoylated micro1N peptide.
J Virol. 2009 Jul;83(14):7004-14. doi: 10.1128/JVI.00377-09. Epub 2009 May 13.
6
Role of cellular heparan sulfate proteoglycans in infection of human adenovirus serotype 3 and 35.
PLoS Pathog. 2008 Oct;4(10):e1000189. doi: 10.1371/journal.ppat.1000189. Epub 2008 Oct 31.
7
Structure and dynamics of helix-0 of the N-BAR domain in lipid micelles and bilayers.
Biophys J. 2008 Nov 1;95(9):4315-23. doi: 10.1529/biophysj.108.134155. Epub 2008 Jul 25.
8
Mechanism of adenovirus neutralization by Human alpha-defensins.
Cell Host Microbe. 2008 Jan 17;3(1):11-9. doi: 10.1016/j.chom.2007.12.001.
9
Reovirus apoptosis and virulence are regulated by host cell membrane penetration efficiency.
J Virol. 2008 Jan;82(1):161-72. doi: 10.1128/JVI.01739-07. Epub 2007 Oct 24.
10
A general amphipathic alpha-helical motif for sensing membrane curvature.
Nat Struct Mol Biol. 2007 Feb;14(2):138-46. doi: 10.1038/nsmb1194. Epub 2007 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验