Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.
Infect Immun. 2010 Jul;78(7):3036-46. doi: 10.1128/IAI.00218-10. Epub 2010 Apr 26.
Probiotics are viable microorganisms that are increasingly used for treatment of a variety of diseases. Occasionally, however, probiotics may have adverse clinical effects, including septicemia. Here we examined the role of the intestinal microbiota and the adaptive immune system in preventing translocation of probiotics (e.g., Escherichia coli Nissle). We challenged C57BL/6J mice raised under germfree conditions (GF-raised C57BL/6J mice) and Rag1(-/-) mice raised under germfree conditions (GF-raised Rag1(-/-) mice) and under specific-pathogen-free conditions (SPF-raised Rag1(-/-) mice) with probiotic E. coli strain Nissle 1917, strain Nissle 1917 mutants, the commensal strain E. coli mpk, or Bacteroides vulgatus mpk. Additionally, we reconstituted Rag1(-/-) mice with CD4(+) T cells. E. coli translocation and dissemination and the mortality of mice were assessed. In GF-raised Rag1(-/-) mice, but not in SPF-raised Rag1(-/-) mice or GF-raised C57BL/6J mice, oral challenge with E. coli strain Nissle 1917, but not oral challenge with E. coli mpk, resulted in translocation and dissemination. The mortality rate was significantly higher for E. coli strain Nissle 1917-challenged GF-raised Rag1(-/-) mice (100%; P < 0.001) than for E. coli strain Nissle 1917-challenged SPF-raised Rag1(-/-) mice (0%) and GF-raised C57BL/6J mice (0%). Translocation of and mortality due to strain E. coli Nissle 1917 in GF-raised Rag1(-/-) mice were prevented when mice were reconstituted with T cells prior to strain E. coli Nissle 1917 challenge, but not when mice were reconstituted with T cells after E. coli strain Nissle 1917 challenge. Cocolonization experiments revealed that E. coli mpk could not prevent translocation of strain E. coli Nissle 1917. Moreover, we demonstrated that neither lipopolysaccharide structure nor flagella play a role in E. coli strain Nissle 1917 translocation and dissemination. Our results suggest that if both the microbiota and adaptive immunity are defective, translocation across the intestinal epithelium and dissemination of the probiotic E. coli strain Nissle 1917 may occur and have potentially severe adverse effects. Future work should define the possibly related molecular factors that promote probiotic functions, fitness, and facultative pathogenicity.
益生菌是一种有活力的微生物,越来越多地用于治疗各种疾病。然而,益生菌偶尔会产生不良的临床影响,包括败血症。在这里,我们研究了肠道微生物群和适应性免疫系统在防止益生菌(如大肠杆菌 Nissle)易位中的作用。我们用益生菌大肠杆菌菌株 Nissle 1917、Nissle 1917 突变株、共生菌株大肠杆菌 mpk 或脆弱拟杆菌 mpk 挑战在无菌条件下(GF 饲养的 C57BL/6J 小鼠)和在无菌条件下(GF 饲养的 Rag1(-/-) 小鼠)饲养的 Rag1(-/-) 小鼠和在特定病原体无菌条件下(SPF 饲养的 Rag1(-/-) 小鼠)。此外,我们用 CD4(+) T 细胞重建 Rag1(-/-) 小鼠。评估了大肠杆菌的易位和扩散以及小鼠的死亡率。在 GF 饲养的 Rag1(-/-) 小鼠中,但不在 SPF 饲养的 Rag1(-/-) 小鼠或 GF 饲养的 C57BL/6J 小鼠中,口服挑战大肠杆菌菌株 Nissle 1917,但口服挑战大肠杆菌 mpk 不会导致易位和扩散。Nissle 1917 挑战的 GF 饲养的 Rag1(-/-) 小鼠的死亡率明显高于 Nissle 1917 挑战的 SPF 饲养的 Rag1(-/-) 小鼠(100%;P < 0.001)和 Nissle 1917 挑战的 GF 饲养的 C57BL/6J 小鼠(0%)。在 Nissle 1917 挑战之前用 T 细胞重建 Rag1(-/-) 小鼠可预防 Nissle 1917 菌株大肠杆菌在 GF 饲养的 Rag1(-/-) 小鼠中的易位和死亡,但在 Nissle 1917 挑战后用 T 细胞重建 Rag1(-/-) 小鼠则不能预防。共定植实验表明,大肠杆菌 mpk 不能防止 Nissle 1917 菌株大肠杆菌的易位。此外,我们证明,大肠杆菌 Nissle 1917 的脂多糖结构和鞭毛都不参与其易位和传播。我们的结果表明,如果肠道微生物群和适应性免疫系统都有缺陷,益生菌大肠杆菌 Nissle 1917 的易位和传播可能会发生,并可能产生严重的不良影响。未来的工作应确定可能促进益生菌功能、适应性和兼性致病性的相关分子因素。