Suppr超能文献

益生菌大肠杆菌菌株 Nissle 1917 的安全性取决于宿主的肠道菌群和适应性免疫。

Safety of probiotic Escherichia coli strain Nissle 1917 depends on intestinal microbiota and adaptive immunity of the host.

机构信息

Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.

出版信息

Infect Immun. 2010 Jul;78(7):3036-46. doi: 10.1128/IAI.00218-10. Epub 2010 Apr 26.

Abstract

Probiotics are viable microorganisms that are increasingly used for treatment of a variety of diseases. Occasionally, however, probiotics may have adverse clinical effects, including septicemia. Here we examined the role of the intestinal microbiota and the adaptive immune system in preventing translocation of probiotics (e.g., Escherichia coli Nissle). We challenged C57BL/6J mice raised under germfree conditions (GF-raised C57BL/6J mice) and Rag1(-/-) mice raised under germfree conditions (GF-raised Rag1(-/-) mice) and under specific-pathogen-free conditions (SPF-raised Rag1(-/-) mice) with probiotic E. coli strain Nissle 1917, strain Nissle 1917 mutants, the commensal strain E. coli mpk, or Bacteroides vulgatus mpk. Additionally, we reconstituted Rag1(-/-) mice with CD4(+) T cells. E. coli translocation and dissemination and the mortality of mice were assessed. In GF-raised Rag1(-/-) mice, but not in SPF-raised Rag1(-/-) mice or GF-raised C57BL/6J mice, oral challenge with E. coli strain Nissle 1917, but not oral challenge with E. coli mpk, resulted in translocation and dissemination. The mortality rate was significantly higher for E. coli strain Nissle 1917-challenged GF-raised Rag1(-/-) mice (100%; P < 0.001) than for E. coli strain Nissle 1917-challenged SPF-raised Rag1(-/-) mice (0%) and GF-raised C57BL/6J mice (0%). Translocation of and mortality due to strain E. coli Nissle 1917 in GF-raised Rag1(-/-) mice were prevented when mice were reconstituted with T cells prior to strain E. coli Nissle 1917 challenge, but not when mice were reconstituted with T cells after E. coli strain Nissle 1917 challenge. Cocolonization experiments revealed that E. coli mpk could not prevent translocation of strain E. coli Nissle 1917. Moreover, we demonstrated that neither lipopolysaccharide structure nor flagella play a role in E. coli strain Nissle 1917 translocation and dissemination. Our results suggest that if both the microbiota and adaptive immunity are defective, translocation across the intestinal epithelium and dissemination of the probiotic E. coli strain Nissle 1917 may occur and have potentially severe adverse effects. Future work should define the possibly related molecular factors that promote probiotic functions, fitness, and facultative pathogenicity.

摘要

益生菌是一种有活力的微生物,越来越多地用于治疗各种疾病。然而,益生菌偶尔会产生不良的临床影响,包括败血症。在这里,我们研究了肠道微生物群和适应性免疫系统在防止益生菌(如大肠杆菌 Nissle)易位中的作用。我们用益生菌大肠杆菌菌株 Nissle 1917、Nissle 1917 突变株、共生菌株大肠杆菌 mpk 或脆弱拟杆菌 mpk 挑战在无菌条件下(GF 饲养的 C57BL/6J 小鼠)和在无菌条件下(GF 饲养的 Rag1(-/-) 小鼠)饲养的 Rag1(-/-) 小鼠和在特定病原体无菌条件下(SPF 饲养的 Rag1(-/-) 小鼠)。此外,我们用 CD4(+) T 细胞重建 Rag1(-/-) 小鼠。评估了大肠杆菌的易位和扩散以及小鼠的死亡率。在 GF 饲养的 Rag1(-/-) 小鼠中,但不在 SPF 饲养的 Rag1(-/-) 小鼠或 GF 饲养的 C57BL/6J 小鼠中,口服挑战大肠杆菌菌株 Nissle 1917,但口服挑战大肠杆菌 mpk 不会导致易位和扩散。Nissle 1917 挑战的 GF 饲养的 Rag1(-/-) 小鼠的死亡率明显高于 Nissle 1917 挑战的 SPF 饲养的 Rag1(-/-) 小鼠(100%;P < 0.001)和 Nissle 1917 挑战的 GF 饲养的 C57BL/6J 小鼠(0%)。在 Nissle 1917 挑战之前用 T 细胞重建 Rag1(-/-) 小鼠可预防 Nissle 1917 菌株大肠杆菌在 GF 饲养的 Rag1(-/-) 小鼠中的易位和死亡,但在 Nissle 1917 挑战后用 T 细胞重建 Rag1(-/-) 小鼠则不能预防。共定植实验表明,大肠杆菌 mpk 不能防止 Nissle 1917 菌株大肠杆菌的易位。此外,我们证明,大肠杆菌 Nissle 1917 的脂多糖结构和鞭毛都不参与其易位和传播。我们的结果表明,如果肠道微生物群和适应性免疫系统都有缺陷,益生菌大肠杆菌 Nissle 1917 的易位和传播可能会发生,并可能产生严重的不良影响。未来的工作应确定可能促进益生菌功能、适应性和兼性致病性的相关分子因素。

相似文献

1
Safety of probiotic Escherichia coli strain Nissle 1917 depends on intestinal microbiota and adaptive immunity of the host.
Infect Immun. 2010 Jul;78(7):3036-46. doi: 10.1128/IAI.00218-10. Epub 2010 Apr 26.
3
Bacteroides vulgatus protects against Escherichia coli-induced colitis in gnotobiotic interleukin-2-deficient mice.
Gastroenterology. 2003 Jul;125(1):162-77. doi: 10.1016/s0016-5085(03)00672-3.
4
Probiotic Properties of Escherichia coli Nissle in Human Intestinal Organoids.
mBio. 2020 Jul 7;11(4):e01470-20. doi: 10.1128/mBio.01470-20.
7
A Toxic Friend: Genotoxic and Mutagenic Activity of the Probiotic Strain Escherichia coli Nissle 1917.
mSphere. 2021 Aug 25;6(4):e0062421. doi: 10.1128/mSphere.00624-21. Epub 2021 Aug 11.
9
Intestinal immunity of Escherichia coli NISSLE 1917: a safe carrier for therapeutic molecules.
FEMS Immunol Med Microbiol. 2005 Mar 1;43(3):373-84. doi: 10.1016/j.femsim.2004.10.023.

引用本文的文献

1
Exploring the impact of probiotic route of administration on its protective effects against pathogenic infection in .
J R Soc N Z. 2024 May 15;55(6):1610-1622. doi: 10.1080/03036758.2024.2353736. eCollection 2025.
2
Engineering Saccharomyces cerevisiae for medical applications.
Microb Cell Fact. 2025 Jan 9;24(1):12. doi: 10.1186/s12934-024-02625-5.
4
Benefits and concerns of probiotics: an overview of the potential genotoxicity of the colibactin-producing Nissle 1917 strain.
Gut Microbes. 2024 Jan-Dec;16(1):2397874. doi: 10.1080/19490976.2024.2397874. Epub 2024 Sep 4.
5
Periplasmic stress contributes to a trade-off between protein secretion and cell growth in  Nissle 1917.
Synth Biol (Oxf). 2023 Jul 31;8(1):ysad013. doi: 10.1093/synbio/ysad013. eCollection 2023.
7
Single-cell hemoprotein (heme-SCP) exerts the prebiotic potential to establish a healthy gut microbiota in small pet dogs.
Food Sci Biotechnol. 2022 Nov 23;32(4):489-496. doi: 10.1007/s10068-022-01195-9. eCollection 2023 Mar.
9
An adult zebrafish model for adherent-invasive indicates protection from AIEC infection by probiotic Nissle.
iScience. 2022 Jun 9;25(7):104572. doi: 10.1016/j.isci.2022.104572. eCollection 2022 Jul 15.
10
Serial passage in an insect host indicates genetic stability of the human probiotic Nissle 1917.
Evol Med Public Health. 2022 Feb 11;10(1):71-86. doi: 10.1093/emph/eoac001. eCollection 2022.

本文引用的文献

1
Sever sepsis after probiotic treatment with Escherichia coli NISSLE 1917.
Pediatr Infect Dis J. 2010 Feb;29(2):188-9. doi: 10.1097/INF.0b013e3181c36eb9.
2
Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism.
Science. 2009 Jul 31;325(5940):617-20. doi: 10.1126/science.1172747.
3
Do symbiotic bacteria subvert host immunity?
Nat Rev Microbiol. 2009 May;7(5):367-74. doi: 10.1038/nrmicro2114.
5
CD4+ lymphocytes control gut epithelial apoptosis and mediate survival in sepsis.
FASEB J. 2009 Jun;23(6):1817-25. doi: 10.1096/fj.08-119024. Epub 2009 Jan 21.
7
Long-term treatment with infliximab in inflammatory bowel disease: safety and tolerability issues.
Expert Opin Drug Saf. 2008 Sep;7(5):617-32. doi: 10.1517/14740338.7.5.617.
8
Probiotic prophylaxis in predicted severe acute pancreatitis.
Lancet. 2008 Jul 12;372(9633):114-115. doi: 10.1016/S0140-6736(08)61028-4.
9
Molecular basis of uropathogenic Escherichia coli evasion of the innate immune response in the bladder.
Infect Immun. 2008 Sep;76(9):3891-900. doi: 10.1128/IAI.00069-08. Epub 2008 Jun 16.
10
A microbial symbiosis factor prevents intestinal inflammatory disease.
Nature. 2008 May 29;453(7195):620-5. doi: 10.1038/nature07008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验