Suppr超能文献

硅在 28 天血管内植入物试验期间引起最小的血栓炎症反应。

Silicon induces minimal thromboinflammatory response during 28-day intravascular implant testing.

机构信息

Section of Plastic Surgery, University of Michigan, 1500 E. Medical Center Dr., 2130 Taubman Center, Ann Arbor, Michigan, USA.

出版信息

ASAIO J. 2010 Jul-Aug;56(4):344-8. doi: 10.1097/MAT.0b013e3181d98cf8.

Abstract

Microelectromechanical systems (MEMS) are used to machine miniaturized implantable medical devices. Our group has used MEMS technology to develop hemofiltration membranes for use in renal replacement therapy, which possess enhanced selectivity and permeability. The use of silicon in blood-contacting environments may be limited, however, due to contact activation of the coagulation cascade by silicon, which forms the surface oxides in atmospheric conditions. As well, the reports of long-term biocompatibility of blood- contacting silicon devices are lacking. The aims of this pilot study were as follows: 1) to develop a model for investigating the effects of intravascular implants and 2) to characterize the degree of thrombosis and tissue inflammation incited by prolonged implantation of silicon materials. Silicon implants with and without polyethylene glycol (PEG) coatings were surgically implanted transluminally through rat femoral veins. Gore-Tex and stainless steel implants served as controls. The implants were left in vivo for 4 weeks. All femoral veins remained patent. The veins associated with silicon implants exhibited rare thrombi and occasional mild perivascular inflammation. In contrast, Gore-Tex and stainless steel controls caused moderate vein thrombosis and provoked a moderate to marked cellular infiltrate. Under scanning electron microscopy, bare silicon implants were found to have significant adherent microthrombi, whereas PEG-treated implants showed no evidence of thrombi. PEG-treated silicon seems to be biocompatible and holds potential as an excellent material with which to construct an implantable, miniaturized hemofiltration membrane.

摘要

微机电系统(MEMS)用于制造微型植入式医疗设备。我们的团队已经使用 MEMS 技术开发了用于肾脏替代治疗的血液滤过膜,这种膜具有增强的选择性和通透性。然而,由于硅在接触血液的环境中可能会受到限制,因为硅会激活凝血级联反应,从而在大气条件下形成表面氧化物。此外,缺乏关于接触血液的硅设备长期生物相容性的报告。本初步研究的目的如下:1)开发一种用于研究血管内植入物影响的模型;2)表征硅材料长期植入引起的血栓形成和组织炎症的程度。带有和不带有聚乙二醇(PEG)涂层的硅植入物通过大鼠股静脉经皮腔内植入。戈尔和不锈钢植入物作为对照。植入物在体内保留 4 周。所有股静脉均保持通畅。与硅植入物相关的静脉仅显示罕见的血栓和偶尔的轻度血管周围炎症。相比之下,戈尔和不锈钢对照物引起中度静脉血栓形成,并引起中度至明显的细胞浸润。在扫描电子显微镜下,发现裸露的硅植入物有明显的附着性微血栓,而经 PEG 处理的植入物则没有血栓的证据。PEG 处理的硅似乎具有生物相容性,并有可能成为构建可植入微型血液滤过膜的优秀材料。

相似文献

1
Silicon induces minimal thromboinflammatory response during 28-day intravascular implant testing.
ASAIO J. 2010 Jul-Aug;56(4):344-8. doi: 10.1097/MAT.0b013e3181d98cf8.
2
Hemocompatibility of silicon-based substrates for biomedical implant applications.
Ann Biomed Eng. 2011 Apr;39(4):1296-305. doi: 10.1007/s10439-011-0256-y. Epub 2011 Feb 2.
3
First Implantation of Silicon Nanopore Membrane Hemofilters.
ASAIO J. 2016 Jul-Aug;62(4):491-5. doi: 10.1097/MAT.0000000000000367.
4
High-Performance Silicon Nanopore Hemofiltration Membranes.
J Memb Sci. 2009 Jan 5;326(1):58-63. doi: 10.1016/j.memsci.2008.09.039.
5
Biocompatibility and biofouling of MEMS drug delivery devices.
Biomaterials. 2003 May;24(11):1959-67. doi: 10.1016/s0142-9612(02)00565-3.
6
Development of continuous implantable renal replacement: past and future.
Transl Res. 2007 Dec;150(6):327-36. doi: 10.1016/j.trsl.2007.06.001. Epub 2007 Jul 2.
7
PPS-PEG surface coating to reduce thrombogenicity of small diameter ePTFE vascular grafts.
Int J Artif Organs. 2005 Oct;28(10):993-1002. doi: 10.1177/039139880502801006.

引用本文的文献

1
Approaches to kidney replacement therapies-opportunities and challenges.
Front Cell Dev Biol. 2022 Jul 22;10:953408. doi: 10.3389/fcell.2022.953408. eCollection 2022.
2
Blood compatibility of widely used central venous catheters; an experimental study.
Sci Rep. 2022 May 21;12(1):8600. doi: 10.1038/s41598-022-12564-z.
3
Stem Cell Therapies for Treating Diabetes: Progress and Remaining Challenges.
Cell Stem Cell. 2018 Jun 1;22(6):810-823. doi: 10.1016/j.stem.2018.05.016.
4
Sterilization effects on ultrathin film polymer coatings for silicon-based implantable medical devices.
J Biomed Mater Res B Appl Biomater. 2018 Aug;106(6):2327-2336. doi: 10.1002/jbm.b.34039. Epub 2017 Nov 6.
6
First Implantation of Silicon Nanopore Membrane Hemofilters.
ASAIO J. 2016 Jul-Aug;62(4):491-5. doi: 10.1097/MAT.0000000000000367.
7
Progress and challenges in macroencapsulation approaches for type 1 diabetes (T1D) treatment: Cells, biomaterials, and devices.
Biotechnol Bioeng. 2016 Jul;113(7):1381-402. doi: 10.1002/bit.25895. Epub 2016 Jan 4.
9
Hemocompatibility of silicon-based substrates for biomedical implant applications.
Ann Biomed Eng. 2011 Apr;39(4):1296-305. doi: 10.1007/s10439-011-0256-y. Epub 2011 Feb 2.

本文引用的文献

1
Permeability - Selectivity Analysis for Ultrafiltration: Effect of Pore Geometry.
J Memb Sci. 2010 Mar 1;349(1-2):405. doi: 10.1016/j.memsci.2009.12.003.
2
High-Performance Silicon Nanopore Hemofiltration Membranes.
J Memb Sci. 2009 Jan 5;326(1):58-63. doi: 10.1016/j.memsci.2008.09.039.
3
In vitro immunogenicity of silicon-based micro- and nanostructured surfaces.
ACS Nano. 2008 May;2(5):1076-84. doi: 10.1021/nn800071k.
4
Tissue engineering of an implantable bioartificial hemofilter.
ASAIO J. 2007 Mar-Apr;53(2):176-86. doi: 10.1097/01.mat.0000259295.56446.40.
5
Dialysis and nanotechnology: now, 10 years, or never?
Blood Purif. 2007;25(1):12-7. doi: 10.1159/000096391. Epub 2006 Dec 14.
6
Evaluation of silicon nanoporous membranes and ECM-based microenvironments on neurosecretory cells.
Biomaterials. 2006 Jun;27(16):3075-83. doi: 10.1016/j.biomaterials.2005.12.017. Epub 2006 Feb 2.
7
Nanostructured antifouling poly(ethylene glycol) films for silicon-based microsystems.
J Nanosci Nanotechnol. 2005 Feb;5(2):235-43. doi: 10.1166/jnn.2005.030.
9
Quotidian dialysis--update 2005.
Curr Opin Nephrol Hypertens. 2005 Mar;14(2):119-24. doi: 10.1097/00041552-200503000-00006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验