Suppr超能文献

MSEA:一种基于网络的工具,用于鉴定定量代谢组学数据中的生物学有意义模式。

MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data.

机构信息

Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.

出版信息

Nucleic Acids Res. 2010 Jul;38(Web Server issue):W71-7. doi: 10.1093/nar/gkq329. Epub 2010 May 10.

Abstract

Gene set enrichment analysis (GSEA) is a widely used technique in transcriptomic data analysis that uses a database of predefined gene sets to rank lists of genes from microarray studies to identify significant and coordinated changes in gene expression data. While GSEA has been playing a significant role in understanding transcriptomic data, no similar tools are currently available for understanding metabolomic data. Here, we introduce a web-based server, called Metabolite Set Enrichment Analysis (MSEA), to help researchers identify and interpret patterns of human or mammalian metabolite concentration changes in a biologically meaningful context. Key to the development of MSEA has been the creation of a library of approximately 1000 predefined metabolite sets covering various metabolic pathways, disease states, biofluids, and tissue locations. MSEA also supports user-defined or custom metabolite sets for more specialized analysis. MSEA offers three different enrichment analyses for metabolomic studies including overrepresentation analysis (ORA), single sample profiling (SSP) and quantitative enrichment analysis (QEA). ORA requires only a list of compound names, while SSP and QEA require both compound names and compound concentrations. MSEA generates easily understood graphs or tables embedded with hyperlinks to relevant pathway images and disease descriptors. For non-mammalian or more specialized metabolomic studies, MSEA allows users to provide their own metabolite sets for enrichment analysis. The MSEA server also supports conversion between metabolite common names, synonyms, and major database identifiers. MSEA has the potential to help users identify obvious as well as 'subtle but coordinated' changes among a group of related metabolites that may go undetected with conventional approaches. MSEA is freely available at http://www.msea.ca.

摘要

基因集富集分析(GSEA)是一种广泛应用于转录组数据分析的技术,它使用预定义的基因集数据库对微阵列研究中的基因列表进行排序,以识别基因表达数据中的显著和协调变化。虽然 GSEA 在理解转录组数据方面发挥了重要作用,但目前还没有类似的工具可用于理解代谢组数据。在这里,我们引入了一个名为代谢物集富集分析(MSEA)的基于网络的服务器,帮助研究人员在有意义的生物学背景下识别和解释人类或哺乳动物代谢物浓度变化的模式。MSEA 开发的关键是创建了一个大约 1000 个预定义代谢物集的库,涵盖了各种代谢途径、疾病状态、生物流体和组织位置。MSEA 还支持用户定义或自定义代谢物集进行更专门的分析。MSEA 为代谢组学研究提供了三种不同的富集分析,包括过度代表分析(ORA)、单样本分析(SSP)和定量富集分析(QEA)。ORA 只需要化合物名称列表,而 SSP 和 QEA 需要化合物名称和化合物浓度。MSEA 生成易于理解的图形或表格,并嵌入到相关途径图像和疾病描述符的超链接中。对于非哺乳动物或更专门的代谢组学研究,MSEA 允许用户为富集分析提供自己的代谢物集。MSEA 服务器还支持代谢物常用名称、同义词和主要数据库标识符之间的转换。MSEA 有可能帮助用户识别一组相关代谢物中明显的以及“微妙但协调”的变化,这些变化可能会被传统方法所忽略。MSEA 可在 http://www.msea.ca 免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f547/2896187/cac30fd5d29c/gkq329f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验