Suppr超能文献

组织中临床金属针的光声成像。

Photoacoustic imaging of clinical metal needles in tissue.

机构信息

The University of Texas at Austin, Department of Biomedical Engineering, 1 University Station C0800, Austin, Texas 78712, USA.

出版信息

J Biomed Opt. 2010 Mar-Apr;15(2):021309. doi: 10.1117/1.3368686.

Abstract

The ability to visualize and track temporarily or permanently implanted metal devices is important in many applications ranging from diagnosis to therapy. Specifically, reliable imaging of metal needles is required in today's clinical settings. Currently, ultrasound is utilized to image a needle inserted into tissue in real time. However, the diagnostic value and tracking ability of these images depends highly on the orientation of the needle, and also its proximity to regions of interest in the tissue. We examine the use of photoacoustic imaging combined with current ultrasound imaging methods to obtain high-contrast images of commonly used needles in the body. Experiments were performed using 21 G and 30 G needles inserted into ex vivo porcine tissue and tissue-mimicking phantoms. The needles and surrounding tissue were imaged using an ultrasound imaging system interfaced with the pulsed laser source necessary for photoacoustic imaging. The results suggest that photoacoustic imaging, combined with ultrasound imaging, is capable of real-time, high-contrast, and high-spatial-resolution visualization of metal implants within anatomical landmarks of the background tissue.

摘要

在从诊断到治疗等多种应用中,能够可视化和跟踪临时或永久植入的金属设备是非常重要的。具体来说,在当今的临床环境中,需要可靠地对金属针进行成像。目前,超声被用于实时成像插入组织中的针。然而,这些图像的诊断价值和跟踪能力高度依赖于针的方向,以及其与组织中感兴趣区域的接近程度。我们研究了将光声成象与现有的超声成像方法结合使用,以获得体内常用针的高对比度图像。使用插入离体猪组织和组织模拟体模中的 21 G 和 30 G 针进行了实验。使用与脉冲激光源接口的超声成像系统对针和周围组织进行成像,该脉冲激光源是光声成象所必需的。结果表明,光声成象与超声成象结合使用,可以实时、高对比度和高空间分辨率地可视化背景组织解剖标志内的金属植入物。

相似文献

1
Photoacoustic imaging of clinical metal needles in tissue.
J Biomed Opt. 2010 Mar-Apr;15(2):021309. doi: 10.1117/1.3368686.
3
Quantitative photoacoustic tomography with multiple optical sources.
Appl Opt. 2010 Jun 20;49(18):3566-72. doi: 10.1364/AO.49.003566.
4
Real-time 3D curved needle segmentation using combined B-mode and power Doppler ultrasound.
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):381-8. doi: 10.1007/978-3-319-10470-6_48.
5
3-D ultrasound-guided robotic needle steering in biological tissue.
IEEE Trans Biomed Eng. 2014 Dec;61(12):2899-910. doi: 10.1109/TBME.2014.2334309. Epub 2014 Jul 1.
6
Viscoelastic property measurement in thin tissue constructs using ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Feb;55(2):368-83. doi: 10.1109/TUFFC.2008.655.
7
Needle and seed segmentation in intra-operative 3D ultrasound-guided prostate brachytherapy.
Ultrasonics. 2006 Dec 22;44 Suppl 1:e331-6. doi: 10.1016/j.ultras.2006.07.003. Epub 2006 Jul 28.
8
Photoacoustic imaging of the bladder: a pilot study.
J Ultrasound Med. 2013 Jul;32(7):1245-50. doi: 10.7863/ultra.32.7.1245.
9
Quantitative three-dimensional photoacoustic tomography of the finger joints: phantom studies in a spherical scanning geometry.
Phys Med Biol. 2009 Sep 21;54(18):5457-67. doi: 10.1088/0031-9155/54/18/007. Epub 2009 Aug 26.

引用本文的文献

1
Handheld interventional ultrasound/photoacoustic puncture needle navigation based on deep learning segmentation.
Biomed Opt Express. 2023 Oct 26;14(11):5979-5993. doi: 10.1364/BOE.504999. eCollection 2023 Nov 1.
2
Niche preclinical and clinical applications of photoacoustic imaging with endogenous contrast.
Photoacoustics. 2023 Jul 17;32:100533. doi: 10.1016/j.pacs.2023.100533. eCollection 2023 Aug.
3
Optimization of the laser irradiation pattern in a high frame rate integrated photoacoustic / ultrasound (PAUS) imaging system.
IEEE Int Ultrason Symp. 2015 Oct;2015. doi: 10.1109/ultsym.2015.0032. Epub 2015 Nov 16.
4
Photoacoustic imaging phantoms for assessment of object detectability and boundary buildup artifacts.
Photoacoustics. 2022 Mar 21;26:100348. doi: 10.1016/j.pacs.2022.100348. eCollection 2022 Jun.
6
Photoacoustic-guided endovenous laser ablation: Characterization and canine study.
Photoacoustics. 2021 Aug 30;24:100298. doi: 10.1016/j.pacs.2021.100298. eCollection 2021 Dec.
7
Photoacoustic-guided surgery from head to toe [Invited].
Biomed Opt Express. 2021 Mar 16;12(4):2079-2117. doi: 10.1364/BOE.417984. eCollection 2021 Apr 1.
8
Polyacrylamide hydrogel phantoms for performance evaluation of multispectral photoacoustic imaging systems.
Photoacoustics. 2021 Feb 20;22:100245. doi: 10.1016/j.pacs.2021.100245. eCollection 2021 Jun.
9
Deep learning for biomedical photoacoustic imaging: A review.
Photoacoustics. 2021 Feb 2;22:100241. doi: 10.1016/j.pacs.2021.100241. eCollection 2021 Jun.

本文引用的文献

1
Photoacoustic imaging of coronary artery stents.
Opt Express. 2009 Oct 26;17(22):19894-901. doi: 10.1364/OE.17.019894.
4
Needle visualization in ultrasound-guided regional anesthesia: challenges and solutions.
Reg Anesth Pain Med. 2008 Nov-Dec;33(6):532-44. doi: 10.1016/j.rapm.2008.06.002.
5
Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques.
Opt Express. 2008 Mar 3;16(5):3362-7. doi: 10.1364/oe.16.003362.
6
Minimization of needle deflection in robot-assisted percutaneous therapy.
Int J Med Robot. 2007 Jun;3(2):140-8. doi: 10.1002/rcs.136.
7
Strain imaging using conventional and ultrafast ultrasound imaging: numerical analysis.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 May;54(5):987-95. doi: 10.1109/tuffc.2007.344.
8
3D TRUS guided robot assisted prostate brachytherapy.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):17-24. doi: 10.1007/11566489_3.
10
Visualisation of needle position using ultrasonography.
Anaesthesia. 2006 Feb;61(2):148-58. doi: 10.1111/j.1365-2044.2005.04475.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验