Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.
PLoS Comput Biol. 2010 May 6;6(5):e1000767. doi: 10.1371/journal.pcbi.1000767.
Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine (GC), for instance in actinobacteria. GC mutation bias deeply influences the folding stability of proteins, making proteins on the average less hydrophobic and therefore less stable with respect to unfolding but also less susceptible to misfolding and aggregation. We study a model where proteins evolve subject to selection for folding stability under given mutation bias, population size, and neutrality. We find a non-neutral regime where, for any given population size, there is an optimal mutation bias that maximizes fitness. Interestingly, this optimal GC usage is small for small populations, large for intermediate populations and around 50% for large populations. This result is robust with respect to the definition of the fitness function and to the protein structures studied. Our model suggests that small populations evolving with small GC usage eventually accumulate a significant selective advantage over populations evolving without this bias. This provides a possible explanation to the observation that most species adopting obligatory intracellular lifestyles with a consequent reduction of effective population size shifted their mutation spectrum towards AT. The model also predicts that large GC usage is optimal for intermediate population size. To test these predictions we estimated the effective population sizes of bacterial species using the optimal codon usage coefficients computed by dos Reis et al. and the synonymous to non-synonymous substitution ratio computed by Daubin and Moran. We found that the population sizes estimated in these ways are significantly smaller for species with small and large GC usage compared to species with no bias, which supports our prediction.
原核生物中的突变偏向从必需内共生或寄生细菌中的极端腺嘌呤和胸腺嘧啶(AT)到例如放线菌中的极端鸟嘌呤和胞嘧啶(GC)变化多样。GC 突变偏向深刻地影响蛋白质的折叠稳定性,使蛋白质平均变得不那么疏水性,因此相对于展开而言不太稳定,但也不太容易发生错误折叠和聚集。我们研究了一种模型,其中蛋白质在给定的突变偏向、种群大小和中性条件下进化以适应折叠稳定性的选择。我们发现了一个非中性的范围,在这个范围内,对于任何给定的种群大小,都存在一个最优的突变偏向,它可以使适应性最大化。有趣的是,对于小种群,最优 GC 使用量较小,对于中等种群,最优 GC 使用量较大,对于大种群,最优 GC 使用量约为 50%。这个结果对于适应性函数的定义和所研究的蛋白质结构都是稳健的。我们的模型表明,在小 GC 使用量下进化的小种群最终会比没有这种偏向的种群积累显著的选择优势。这为观察到的大多数采用强制性细胞内生活方式并因此减少有效种群大小的物种将其突变谱向 AT 转移提供了一个可能的解释。该模型还预测,大 GC 使用量对于中等种群大小是最优的。为了检验这些预测,我们使用 dos Reis 等人计算的最佳密码子使用系数和 Daubin 和 Moran 计算的同义到非同义替代率来估计细菌物种的有效种群大小。我们发现,与没有偏向的物种相比,GC 使用量小和大的物种的估计种群大小明显较小,这支持了我们的预测。