Suppr超能文献

狒狒的视觉和体感运动刺激的 BOLD fMRI。

BOLD fMRI of visual and somatosensory-motor stimulations in baboons.

机构信息

Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA.

出版信息

Neuroimage. 2010 Oct 1;52(4):1420-7. doi: 10.1016/j.neuroimage.2010.05.014. Epub 2010 May 13.

Abstract

Baboon, with its large brain size and extensive cortical folding compared to other non-human primates, serves as a good model for neuroscience research. This study reports the implementation of a baboon model for blood oxygenation level-dependent (BOLD) fMRI studies (1.5 x 1.5 x 4 mm resolution) on a clinical 3T-MRI scanner. BOLD fMRI responses to hypercapnic (5% CO(2)) challenge, 10 Hz flicker visual, and vibrotactile somatosensory-motor stimulations were investigated in baboons anesthetized sequentially with isoflurane and ketamine. Hypercapnia evoked robust BOLD increases. Paralysis was determined to be necessary to achieve reproducible functional activations within and between subjects under our experimental conditions. With optimized anesthetic doses (0.8-1.0% isoflurane or 6-8 mg/kg/h ketamine) and adequate paralysis (vecuronium, 0.2 mg/kg), robust activations were detected in the visual (V), primary (S1) and secondary (S2) somatosensory, primary motor (M cortices), supplementary motor area (SMA), lateral geniculate nucleus (LGN) and thalamus (Th). Data were tabulated for 11 trials under isoflurane and 10 trials under ketamine on 5 baboons. S1, S2, M, and V activations were detected in essentially all trials (90-100% of the time, except 82% for S2 under isoflurane and 70% for M under ketamine). LGN activations were detected 64-70% of the time under both anesthetics. SMA and Th activations were detected 36-45% of the time under isoflurane and 60% of the time under ketamine. BOLD percent changes among different structures were slightly higher under ketamine than isoflurane (0.75% versus 0.58% averaging all structures), but none was statistically different (P>0.05). This baboon model offers an opportunity to non-invasively image brain functions and dysfunctions in large non-human primates.

摘要

狒狒大脑体积大,皮质折叠程度相对于其他非人类灵长类动物更为广泛,因此成为神经科学研究的良好模型。本研究报告了在临床 3T-MRI 扫描仪上对狒狒进行血氧水平依赖(BOLD)fMRI 研究(1.5×1.5×4mm 分辨率)的模型实施情况。在麻醉状态下,使用异氟烷和氯胺酮依次对狒狒进行了高碳酸血症(5%CO2)刺激、10Hz 闪烁视觉刺激和振动触觉感觉运动刺激的 BOLD fMRI 反应研究。在我们的实验条件下,确定需要进行麻痹以实现组内和组间可重复的功能激活。在优化的麻醉剂量(0.8-1.0%异氟烷或 6-8mg/kg/h 氯胺酮)和充分的麻痹(维库溴铵,0.2mg/kg)下,在视觉(V)、初级(S1)和次级(S2)感觉、初级运动(M 皮质)、辅助运动区(SMA)、外侧膝状体核(LGN)和丘脑(Th)中检测到了强烈的激活。在 5 只狒狒中,在异氟烷下进行了 11 次试验,在氯胺酮下进行了 10 次试验,数据被制表。在几乎所有试验中(除异氟烷下的 S2 为 82%和氯胺酮下的 M 为 70%外)都检测到了 S1、S2、M 和 V 的激活。在两种麻醉剂下,LGN 的激活分别检测到 64-70%和 36-45%的时间。在异氟烷下,SMA 和 Th 的激活分别检测到 36-45%和 60%的时间。在不同结构之间,BOLD 百分比变化在氯胺酮下略高于异氟烷(平均所有结构为 0.75%对 0.58%),但均无统计学差异(P>0.05)。该狒狒模型为在大型非人类灵长类动物中进行无创脑功能和功能障碍成像提供了机会。

相似文献

1
BOLD fMRI of visual and somatosensory-motor stimulations in baboons.
Neuroimage. 2010 Oct 1;52(4):1420-7. doi: 10.1016/j.neuroimage.2010.05.014. Epub 2010 May 13.
2
Baseline CBF, and BOLD, CBF, and CMRO2 fMRI of visual and vibrotactile stimulations in baboons.
J Cereb Blood Flow Metab. 2011 Feb;31(2):715-24. doi: 10.1038/jcbfm.2010.154. Epub 2010 Sep 8.
3
Mouse BOLD fMRI at ultrahigh field detects somatosensory networks including thalamic nuclei.
Neuroimage. 2019 Jul 15;195:203-214. doi: 10.1016/j.neuroimage.2019.03.063. Epub 2019 Apr 1.
5
BOLD fMRI mapping of brain responses to nociceptive stimuli in rats under ketamine anesthesia.
Med Eng Phys. 2008 Oct;30(8):953-8. doi: 10.1016/j.medengphy.2007.12.004. Epub 2008 Feb 20.
7
BOLD study of stimulation-induced neural activity and resting-state connectivity in medetomidine-sedated rat.
Neuroimage. 2008 Jan 1;39(1):248-60. doi: 10.1016/j.neuroimage.2007.07.063. Epub 2007 Aug 22.
8
BOLD adaptation in vibrotactile stimulation: neuronal networks involved in frequency discrimination.
J Neurophysiol. 2007 Jan;97(1):264-71. doi: 10.1152/jn.00617.2006. Epub 2006 Oct 25.

引用本文的文献

1
Neuroimaging in the Epileptic Baboon.
Front Vet Sci. 2022 Jul 14;9:908801. doi: 10.3389/fvets.2022.908801. eCollection 2022.
2
Distinct BOLD fMRI Responses of Capsaicin-Induced Thermal Sensation Reveal Pain-Related Brain Activation in Nonhuman Primates.
PLoS One. 2016 Jun 16;11(6):e0156805. doi: 10.1371/journal.pone.0156805. eCollection 2016.
3
Repetitive Transcranial Magnetic Stimulation Educes Frequency-Specific Causal Relationships in the Motor Network.
Brain Stimul. 2016 May-Jun;9(3):406-414. doi: 10.1016/j.brs.2016.02.006. Epub 2016 Feb 16.
4
Investigation of cross-species translatability of pharmacological MRI in awake nonhuman primate - a buprenorphine challenge study.
PLoS One. 2014 Oct 22;9(10):e110432. doi: 10.1371/journal.pone.0110432. eCollection 2014.
6
Multimodal MRI of nonhuman primate stroke.
Transl Stroke Res. 2012 Mar;3(1):84-9. doi: 10.1007/s12975-012-0145-1. Epub 2012 Feb 4.
7
Setup and data analysis for functional magnetic resonance imaging of awake cat visual cortex.
Neurosci Bull. 2013 Oct;29(5):588-602. doi: 10.1007/s12264-013-1349-4. Epub 2013 Jun 14.
8
Repetitive transcranial magnetic stimulation elicits rate-dependent brain network responses in non-human primates.
Brain Stimul. 2013 Sep;6(5):777-87. doi: 10.1016/j.brs.2013.03.002. Epub 2013 Mar 21.
9
MRI of perfusion-diffusion mismatch in non-human primate (baboon) stroke: a preliminary report.
Open Neuroimag J. 2011;5:147-52. doi: 10.2174/1874440001105010147. Epub 2011 Nov 18.
10
Functional neuroimaging of the baboon during concurrent image-guided transcranial magnetic stimulation.
Neuroimage. 2011 Aug 15;57(4):1393-401. doi: 10.1016/j.neuroimage.2011.05.065. Epub 2011 May 30.

本文引用的文献

1
Diffusion tensor and perfusion MRI of non-human primates.
Methods. 2010 Mar;50(3):125-35. doi: 10.1016/j.ymeth.2009.08.001. Epub 2009 Aug 7.
2
Development of structural MR brain imaging protocols to study genetics and maturation.
Methods. 2010 Mar;50(3):136-46. doi: 10.1016/j.ymeth.2009.08.002. Epub 2009 Aug 7.
3
Design, construction, and validation of an MRI-compatible vibrotactile stimulator intended for clinical use.
J Neurosci Methods. 2009 Oct 30;184(1):129-35. doi: 10.1016/j.jneumeth.2009.07.018. Epub 2009 Jul 23.
4
Visual field map clusters in macaque extrastriate visual cortex.
J Neurosci. 2009 May 27;29(21):7031-9. doi: 10.1523/JNEUROSCI.0518-09.2009.
5
Origins of the BOLD post-stimulus undershoot.
Neuroimage. 2009 Jul 1;46(3):559-68. doi: 10.1016/j.neuroimage.2009.03.015. Epub 2009 Mar 19.
6
A new scenario for negative functional magnetic resonance imaging signals: endogenous neurotransmission.
J Neurosci. 2009 Mar 11;29(10):3036-44. doi: 10.1523/JNEUROSCI.3447-08.2009.
7
Bayesian analysis of neuroimaging data in FSL.
Neuroimage. 2009 Mar;45(1 Suppl):S173-86. doi: 10.1016/j.neuroimage.2008.10.055. Epub 2008 Nov 13.
8
An fMRI study of neural interaction in large-scale cortico-thalamic visual network.
Neuroimage. 2008 Sep 1;42(3):1110-7. doi: 10.1016/j.neuroimage.2008.05.060. Epub 2008 Jun 12.
10
BOLD study of stimulation-induced neural activity and resting-state connectivity in medetomidine-sedated rat.
Neuroimage. 2008 Jan 1;39(1):248-60. doi: 10.1016/j.neuroimage.2007.07.063. Epub 2007 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验