Suppr超能文献

重复经颅磁刺激在非人类灵长类动物中引发与频率相关的脑网络反应。

Repetitive transcranial magnetic stimulation elicits rate-dependent brain network responses in non-human primates.

机构信息

Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.

出版信息

Brain Stimul. 2013 Sep;6(5):777-87. doi: 10.1016/j.brs.2013.03.002. Epub 2013 Mar 21.

Abstract

BACKGROUND

Transcranial magnetic stimulation (TMS) has the potential to treat brain disorders by tonically modulating firing patterns in disease-specific neural circuits. The selection of treatment parameters for clinical repetitive transcranial magnetic stimulation (rTMS) trials has not been rule based, likely contributing to the variability of observed outcomes.

OBJECTIVE

To utilize our newly developed baboon (Papio hamadryas anubis) model of rTMS during position-emission tomography (PET) to quantify the brain's rate-response functions in the motor system during rTMS.

METHODS

We delivered image-guided, suprathreshold rTMS at 3 Hz, 5 Hz, 10 Hz, 15 Hz and rest (in separate randomized sessions) to the primary motor cortex (M1) of the lightly anesthetized baboon during PET imaging; we also administered a (reversible) paralytic to eliminate any somatosensory feedback due to rTMS-induced muscle contractions. Each rTMS/PET session was analyzed using normalized cerebral blood flow (CBF) measurements; statistical parametric images and the resulting areas of significance underwent post-hoc analysis to determine any rate-specific rTMS effects throughout the motor network.

RESULTS

The motor system's rate-response curves were unimodal and system wide--with all nodes in the network showing highly similar rate response functions--and an optimal network stimulation frequency of 5 Hz.

CONCLUSION(S): These findings suggest that non-invasive brain stimulation may be more efficiently delivered at (system-specific) optimal frequencies throughout the targeted network and that functional imaging in non-human primates is a promising strategy for identifying the optimal treatment parameters for TMS clinical trials in specific brain regions and/or networks.

摘要

背景

经颅磁刺激(TMS)通过持续调节特定于疾病的神经回路中的放电模式,具有治疗脑部疾病的潜力。临床重复经颅磁刺激(rTMS)试验中治疗参数的选择没有规则可循,这可能导致观察到的结果存在差异。

目的

利用我们新开发的狒狒(Papio hamadryas anubis)rTMS 模型,在正电子发射断层扫描(PET)期间量化运动系统中 rTMS 的大脑反应率功能。

方法

我们在 PET 成像期间,对轻度麻醉的狒狒的初级运动皮层(M1)进行图像引导的、阈上 rTMS 刺激,频率分别为 3 Hz、5 Hz、10 Hz、15 Hz 和休息(在单独的随机会议中);我们还给予(可逆的)麻痹剂,以消除由于 rTMS 诱导的肌肉收缩而产生的任何体感反馈。每个 rTMS/PET 会议都使用归一化脑血流(CBF)测量进行分析;统计参数图像和产生的显著区域进行事后分析,以确定整个运动网络中的任何特定频率的 rTMS 效应。

结果

运动系统的反应率曲线是单峰的,且在整个网络中是系统范围的——网络中的所有节点都显示出高度相似的反应率功能——以及 5 Hz 的最佳网络刺激频率。

结论

这些发现表明,非侵入性脑刺激可能更有效地在整个靶向网络中的(系统特定的)最佳频率下进行,并且非人类灵长类动物的功能成像是确定特定脑区和/或网络中 TMS 临床试验最佳治疗参数的有前途的策略。

相似文献

1
Repetitive transcranial magnetic stimulation elicits rate-dependent brain network responses in non-human primates.
Brain Stimul. 2013 Sep;6(5):777-87. doi: 10.1016/j.brs.2013.03.002. Epub 2013 Mar 21.
2
Repetitive Transcranial Magnetic Stimulation Educes Frequency-Specific Causal Relationships in the Motor Network.
Brain Stimul. 2016 May-Jun;9(3):406-414. doi: 10.1016/j.brs.2016.02.006. Epub 2016 Feb 16.
10
Interleaved TMS/CASL: Comparison of different rTMS protocols.
Neuroimage. 2010 Jan 1;49(1):612-20. doi: 10.1016/j.neuroimage.2009.07.010. Epub 2009 Jul 14.

引用本文的文献

2
Transcranial magnetic stimulation of the brain: What is stimulated? - A consensus and critical position paper.
Clin Neurophysiol. 2022 Aug;140:59-97. doi: 10.1016/j.clinph.2022.04.022. Epub 2022 May 18.
4
The baboon in epilepsy research: Revelations and challenges.
Epilepsy Behav. 2021 Aug;121(Pt A):108012. doi: 10.1016/j.yebeh.2021.108012. Epub 2021 May 19.
5
Altered Topological Organization in the Sensorimotor Network After Application of Different Frequency rTMS.
Front Neurosci. 2019 Dec 19;13:1377. doi: 10.3389/fnins.2019.01377. eCollection 2019.
6
Combined rTMS/fMRI Studies: An Overlooked Resource in Animal Models.
Front Neurosci. 2018 Mar 23;12:180. doi: 10.3389/fnins.2018.00180. eCollection 2018.
7
Repetitive Transcranial Magnetic Stimulation Educes Frequency-Specific Causal Relationships in the Motor Network.
Brain Stimul. 2016 May-Jun;9(3):406-414. doi: 10.1016/j.brs.2016.02.006. Epub 2016 Feb 16.
9
Concurrent TMS to the primary motor cortex augments slow motor learning.
Neuroimage. 2014 Jan 15;85 Pt 3(0 3):971-84. doi: 10.1016/j.neuroimage.2013.07.024. Epub 2013 Jul 15.

本文引用的文献

2
Transcranial magnetic stimulation and aphasia rehabilitation.
Arch Phys Med Rehabil. 2012 Jan;93(1 Suppl):S26-34. doi: 10.1016/j.apmr.2011.04.026.
3
Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials.
J Neurosci. 2011 Aug 24;31(34):12165-70. doi: 10.1523/JNEUROSCI.0978-11.2011.
4
Rhythmic TMS causes local entrainment of natural oscillatory signatures.
Curr Biol. 2011 Jul 26;21(14):1176-85. doi: 10.1016/j.cub.2011.05.049. Epub 2011 Jun 30.
5
Functional neuroimaging of the baboon during concurrent image-guided transcranial magnetic stimulation.
Neuroimage. 2011 Aug 15;57(4):1393-401. doi: 10.1016/j.neuroimage.2011.05.065. Epub 2011 May 30.
6
Effects of repetitive transcranial magnetic stimulation in aphasic stroke: a randomized controlled pilot study.
Stroke. 2011 Feb;42(2):409-15. doi: 10.1161/STROKEAHA.110.597864. Epub 2010 Dec 16.
8
Baseline CBF, and BOLD, CBF, and CMRO2 fMRI of visual and vibrotactile stimulations in baboons.
J Cereb Blood Flow Metab. 2011 Feb;31(2):715-24. doi: 10.1038/jcbfm.2010.154. Epub 2010 Sep 8.
9
Consensus paper: combining transcranial stimulation with neuroimaging.
Brain Stimul. 2009 Apr;2(2):58-80. doi: 10.1016/j.brs.2008.11.002. Epub 2009 Feb 28.
10
BOLD fMRI of visual and somatosensory-motor stimulations in baboons.
Neuroimage. 2010 Oct 1;52(4):1420-7. doi: 10.1016/j.neuroimage.2010.05.014. Epub 2010 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验