Research Imaging Center, Univ. Texas Health Science Center at San Antonio, San Antonio, TX, USA.
Methods. 2010 Mar;50(3):136-46. doi: 10.1016/j.ymeth.2009.08.002. Epub 2009 Aug 7.
Structural imaging research offers excellent translational benefits when non-human primate (NHP) models are employed. In this paper, we will discuss the development of anatomical MR imaging protocols for two important applications of structural imaging in NHPs: studies of genetic variability in brain morphology and longitudinal imaging of fetal brain maturation trends. In contrast with imaging studies of adult humans, structural imaging in the NHPs is challenging due to a comparatively small brain size (2- to 200-fold smaller volume, depending on the species). This difference in size is further accentuated in NHP studies of brain development in which fetal brain volumes are 10-50% of their adult size. The sizes of cortical gyri and sulci scale allometrically with brain size. Thus, achieving spatial sampling that is comparable to that of high-quality human studies (approximately 1.0 mm(3)) requires a brain-size-adjusted reduction in the sampling volumes of from 500-to-150 microm(3). Imaging at this spatial resolution while maintaining sufficient contrast and signal to noise ratio necessitates the development of specialized MRI protocols. Here we discuss our strategy to optimize the protocol parameters for two commonly available structural imaging sequences: MPRAGE and TrueFisp. In addition, computational tools developed for the analysis of human structural images were applied to the NHP studies. These included removal of non-brain tissues, correction for RF inhomogeneity, spatial normalization, building of optimized target brain and analysis of cerebral gyrification and individual cortical variability. Finally, recent findings in the genetics of cerebral gyrification and tracking of maturation trends in the fetal, newborn and adult brain are described.
当使用非人类灵长类动物(NHP)模型时,结构成像研究提供了极好的转化效益。在本文中,我们将讨论为结构成像在 NHP 中的两个重要应用开发解剖磁共振成像(MRI)协议:研究大脑形态的遗传可变性和胎儿大脑成熟趋势的纵向成像。与成年人类的成像研究相比,由于大脑尺寸相对较小(取决于物种,体积小 2 到 200 倍),NHP 中的结构成像具有挑战性。在 NHP 大脑发育研究中,胎儿大脑体积为成人大小的 10-50%,这种大小差异进一步加剧。皮质回和脑沟的大小与大脑尺寸按比例缩放。因此,实现与高质量人类研究相当的空间采样(约 1.0mm³)需要对采样体积进行脑尺寸调整,从 500 到 150μm³不等。在保持足够的对比度和信噪比的情况下,以这种空间分辨率进行成像需要开发专门的 MRI 协议。在这里,我们讨论了优化两种常用结构成像序列(MPRAGE 和 TrueFisp)协议参数的策略。此外,还将为人类结构图像分析开发的计算工具应用于 NHP 研究。这些工具包括去除非脑组织、校正射频不均匀性、空间标准化、构建优化的目标大脑以及分析大脑脑回和个体皮质变异性。最后,描述了大脑脑回遗传学的最新发现以及胎儿、新生儿和成年大脑成熟趋势的跟踪。