Suppr超能文献

制定结构磁共振脑成像方案以研究遗传和成熟。

Development of structural MR brain imaging protocols to study genetics and maturation.

机构信息

Research Imaging Center, Univ. Texas Health Science Center at San Antonio, San Antonio, TX, USA.

出版信息

Methods. 2010 Mar;50(3):136-46. doi: 10.1016/j.ymeth.2009.08.002. Epub 2009 Aug 7.

Abstract

Structural imaging research offers excellent translational benefits when non-human primate (NHP) models are employed. In this paper, we will discuss the development of anatomical MR imaging protocols for two important applications of structural imaging in NHPs: studies of genetic variability in brain morphology and longitudinal imaging of fetal brain maturation trends. In contrast with imaging studies of adult humans, structural imaging in the NHPs is challenging due to a comparatively small brain size (2- to 200-fold smaller volume, depending on the species). This difference in size is further accentuated in NHP studies of brain development in which fetal brain volumes are 10-50% of their adult size. The sizes of cortical gyri and sulci scale allometrically with brain size. Thus, achieving spatial sampling that is comparable to that of high-quality human studies (approximately 1.0 mm(3)) requires a brain-size-adjusted reduction in the sampling volumes of from 500-to-150 microm(3). Imaging at this spatial resolution while maintaining sufficient contrast and signal to noise ratio necessitates the development of specialized MRI protocols. Here we discuss our strategy to optimize the protocol parameters for two commonly available structural imaging sequences: MPRAGE and TrueFisp. In addition, computational tools developed for the analysis of human structural images were applied to the NHP studies. These included removal of non-brain tissues, correction for RF inhomogeneity, spatial normalization, building of optimized target brain and analysis of cerebral gyrification and individual cortical variability. Finally, recent findings in the genetics of cerebral gyrification and tracking of maturation trends in the fetal, newborn and adult brain are described.

摘要

当使用非人类灵长类动物(NHP)模型时,结构成像研究提供了极好的转化效益。在本文中,我们将讨论为结构成像在 NHP 中的两个重要应用开发解剖磁共振成像(MRI)协议:研究大脑形态的遗传可变性和胎儿大脑成熟趋势的纵向成像。与成年人类的成像研究相比,由于大脑尺寸相对较小(取决于物种,体积小 2 到 200 倍),NHP 中的结构成像具有挑战性。在 NHP 大脑发育研究中,胎儿大脑体积为成人大小的 10-50%,这种大小差异进一步加剧。皮质回和脑沟的大小与大脑尺寸按比例缩放。因此,实现与高质量人类研究相当的空间采样(约 1.0mm³)需要对采样体积进行脑尺寸调整,从 500 到 150μm³不等。在保持足够的对比度和信噪比的情况下,以这种空间分辨率进行成像需要开发专门的 MRI 协议。在这里,我们讨论了优化两种常用结构成像序列(MPRAGE 和 TrueFisp)协议参数的策略。此外,还将为人类结构图像分析开发的计算工具应用于 NHP 研究。这些工具包括去除非脑组织、校正射频不均匀性、空间标准化、构建优化的目标大脑以及分析大脑脑回和个体皮质变异性。最后,描述了大脑脑回遗传学的最新发现以及胎儿、新生儿和成年大脑成熟趋势的跟踪。

相似文献

1
Development of structural MR brain imaging protocols to study genetics and maturation.
Methods. 2010 Mar;50(3):136-46. doi: 10.1016/j.ymeth.2009.08.002. Epub 2009 Aug 7.
2
Techniques for in utero, longitudinal MRI of fetal brain development in baboons at 3T.
Methods. 2010 Mar;50(3):147-56. doi: 10.1016/j.ymeth.2009.03.019. Epub 2009 Apr 7.
3
nBEST: Deep-learning-based non-human primates Brain Extraction and Segmentation Toolbox across ages, sites and species.
Neuroimage. 2024 Jul 15;295:120652. doi: 10.1016/j.neuroimage.2024.120652. Epub 2024 May 24.
7
Towards HCP-Style macaque connectomes: 24-Channel 3T multi-array coil, MRI sequences and preprocessing.
Neuroimage. 2020 Jul 15;215:116800. doi: 10.1016/j.neuroimage.2020.116800. Epub 2020 Apr 8.
8
Brain morphometry reproducibility in multi-center 3T MRI studies: a comparison of cross-sectional and longitudinal segmentations.
Neuroimage. 2013 Dec;83:472-84. doi: 10.1016/j.neuroimage.2013.05.007. Epub 2013 May 11.
10
Fetal sulcation and gyrification in common marmosets (Callithrix jacchus) obtained by ex vivo magnetic resonance imaging.
Neuroscience. 2014 Jan 17;257:158-74. doi: 10.1016/j.neuroscience.2013.10.067. Epub 2013 Nov 9.

引用本文的文献

2
White matter and latency of visual evoked potentials during maturation: A miniature pig model of adolescent development.
J Neurosci Methods. 2024 Nov;411:110252. doi: 10.1016/j.jneumeth.2024.110252. Epub 2024 Aug 17.
3
Early and mid-gestation Zika virus (ZIKV) infection in the olive baboon (Papio anubis) leads to fetal CNS pathology by term gestation.
PLoS Pathog. 2022 Aug 15;18(8):e1010386. doi: 10.1371/journal.ppat.1010386. eCollection 2022 Aug.
4
Strengths and challenges of longitudinal non-human primate neuroimaging.
Neuroimage. 2021 Aug 1;236:118009. doi: 10.1016/j.neuroimage.2021.118009. Epub 2021 Mar 29.
5
Homogenizing Estimates of Heritability Among SOLAR-Eclipse, OpenMx, APACE, and FPHI Software Packages in Neuroimaging Data.
Front Neuroinform. 2019 Mar 12;13:16. doi: 10.3389/fninf.2019.00016. eCollection 2019.
6
Changes in Cerebral Blood Flow during an Alteration in Glycemic State in a Large Non-human Primate ( sp.).
Front Neurosci. 2017 Feb 14;11:49. doi: 10.3389/fnins.2017.00049. eCollection 2017.
7
A voxel-based morphometric study of age- and sex-related changes in white matter volume in the normal aging brain.
Neuropsychiatr Dis Treat. 2016 Feb 24;12:453-65. doi: 10.2147/NDT.S90674. eCollection 2016.
8
Genome-wide significant linkage of schizophrenia-related neuroanatomical trait to 12q24.
Am J Med Genet B Neuropsychiatr Genet. 2015 Dec;168(8):678-86. doi: 10.1002/ajmg.b.32360. Epub 2015 Oct 5.

本文引用的文献

1
On the genetic architecture of cortical folding and brain volume in primates.
Neuroimage. 2010 Nov 15;53(3):1103-8. doi: 10.1016/j.neuroimage.2010.02.020. Epub 2010 Feb 20.
2
A population-average MRI-based atlas collection of the rhesus macaque.
Neuroimage. 2009 Mar 1;45(1):52-9. doi: 10.1016/j.neuroimage.2008.10.058. Epub 2008 Nov 14.
3
Study of the development of fetal baboon brain using magnetic resonance imaging at 3 Tesla.
Neuroimage. 2008 Mar 1;40(1):148-59. doi: 10.1016/j.neuroimage.2007.11.021. Epub 2007 Nov 28.
4
Cortical folding patterns and predicting cytoarchitecture.
Cereb Cortex. 2008 Aug;18(8):1973-80. doi: 10.1093/cercor/bhm225. Epub 2007 Dec 12.
5
Surface-based and probabilistic atlases of primate cerebral cortex.
Neuron. 2007 Oct 25;56(2):209-25. doi: 10.1016/j.neuron.2007.10.015.
6
Order-specific quantitative patterns of cortical gyrification.
Eur J Neurosci. 2007 May;25(9):2705-12. doi: 10.1111/j.1460-9568.2007.05524.x. Epub 2007 Apr 25.
8
Insights into the gyrification of developing ferret brain by magnetic resonance imaging.
J Anat. 2007 Jan;210(1):66-77. doi: 10.1111/j.1469-7580.2006.00674.x.
9
Retrospective motion correction protocol for high-resolution anatomical MRI.
Hum Brain Mapp. 2006 Dec;27(12):957-62. doi: 10.1002/hbm.20235.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验