Suppr超能文献

结构层次控制纤维蛋白凝胶力学性质。

Structural hierarchy governs fibrin gel mechanics.

机构信息

Biological Soft Matter Group, Foundation for Fundamental Research on Matter, Institute for Atomic and Molecular Physics, Amsterdam, The Netherlands.

出版信息

Biophys J. 2010 May 19;98(10):2281-9. doi: 10.1016/j.bpj.2010.01.040.

Abstract

Fibrin gels are responsible for the mechanical strength of blood clots, which are among the most resilient protein materials in nature. Here we investigate the physical origin of this mechanical behavior by performing rheology measurements on reconstituted fibrin gels. We find that increasing levels of shear strain induce a succession of distinct elastic responses that reflect stretching processes on different length scales. We present a theoretical model that explains these observations in terms of the unique hierarchical architecture of the fibers. The fibers are bundles of semiflexible protofibrils that are loosely connected by flexible linker chains. This architecture makes the fibers 100-fold more flexible to bending than anticipated based on their large diameter. Moreover, in contrast with other biopolymers, fibrin fibers intrinsically stiffen when stretched. The resulting hierarchy of elastic regimes explains the incredible resilience of fibrin clots against large deformations.

摘要

纤维蛋白凝胶负责血栓的机械强度,它是自然界中最有弹性的蛋白质材料之一。在这里,我们通过对重组纤维蛋白凝胶进行流变学测量来研究这种机械行为的物理起源。我们发现,增加剪切应变水平会引起一系列不同的弹性响应,这些响应反映了不同长度尺度上的拉伸过程。我们提出了一个理论模型,根据纤维的独特层次结构解释了这些观察结果。纤维是由半弹性原纤维组成的束,通过柔性连接链松散地连接。这种结构使纤维在弯曲时的柔韧性比根据其大直径预期的柔韧性高出 100 倍。此外,与其他生物聚合物不同,纤维蛋白纤维在拉伸时会固有地变硬。由此产生的弹性状态层次结构解释了纤维蛋白凝块对大变形的难以置信的弹性。

相似文献

1
Structural hierarchy governs fibrin gel mechanics.
Biophys J. 2010 May 19;98(10):2281-9. doi: 10.1016/j.bpj.2010.01.040.
2
Multi-scale strain-stiffening of semiflexible bundle networks.
Soft Matter. 2016 Feb 21;12(7):2145-56. doi: 10.1039/c5sm01992c. Epub 2016 Jan 13.
3
Micro-tensile rheology of fibrous gels quantifies strain-dependent anisotropy.
Acta Biomater. 2024 Jun;181:272-281. doi: 10.1016/j.actbio.2024.03.028. Epub 2024 Apr 28.
5
Elastic behavior and platelet retraction in low- and high-density fibrin gels.
Biophys J. 2015 Jan 6;108(1):173-83. doi: 10.1016/j.bpj.2014.11.007.
6
Anomalous mechanics of Zn-modified fibrin networks.
Proc Natl Acad Sci U S A. 2021 Mar 9;118(10). doi: 10.1073/pnas.2020541118.
7
Fibrin mechanical properties and their structural origins.
Matrix Biol. 2017 Jul;60-61:110-123. doi: 10.1016/j.matbio.2016.08.003. Epub 2016 Aug 20.
9
Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells.
Nature. 2019 Sep;573(7772):96-101. doi: 10.1038/s41586-019-1516-5. Epub 2019 Aug 28.
10
Revealing the molecular origins of fibrin's elastomeric properties by in situ X-ray scattering.
Acta Biomater. 2020 Mar 1;104:39-52. doi: 10.1016/j.actbio.2020.01.002. Epub 2020 Jan 7.

引用本文的文献

1
Hyperelasticity of blood clots: Bridging the gap between microscopic and continuum scales.
J Mech Phys Solids. 2024 Sep;190. doi: 10.1016/j.jmps.2024.105750. Epub 2024 Jun 20.
2
Loading causes molecular damage in fibrin fibers.
bioRxiv. 2025 May 9:2025.05.08.652948. doi: 10.1101/2025.05.08.652948.
3
Fibrous polyisocyanide hydrogels for 3D cell culture applications.
Nat Protoc. 2025 May 30. doi: 10.1038/s41596-025-01159-3.
4
Structural Mechanisms of Forced Unfolding of Double-Stranded Fibrin Oligomers.
J Phys Chem B. 2025 Apr 24;129(16):3963-3977. doi: 10.1021/acs.jpcb.5c00755. Epub 2025 Apr 14.
5
Scrambled RGD Hexameric Peptide Hydrogel Supports Efficient Self-Assembly and Cell Activity.
Chemistry. 2025 May 14;31(27):e202404410. doi: 10.1002/chem.202404410. Epub 2025 Apr 21.
6
Surface-bound FXIII enhances deposition and straightness of fibrin fibers.
Biophys Rep (N Y). 2025 Mar 24;5(2):100207. doi: 10.1016/j.bpr.2025.100207.
7
Poroelasticity and permeability of fibrous polymer networks under compression.
Soft Matter. 2025 Mar 26;21(13):2400-2412. doi: 10.1039/d4sm01223b.
8
Deconstructing fibrin(ogen) structure.
J Thromb Haemost. 2025 Feb;23(2):368-380. doi: 10.1016/j.jtha.2024.10.024. Epub 2024 Nov 12.
9
Compressive instabilities enable cell-induced extreme densification patterns in the fibrous extracellular matrix: Discrete model predictions.
PLoS Comput Biol. 2024 Jul 1;20(7):e1012238. doi: 10.1371/journal.pcbi.1012238. eCollection 2024 Jul.
10
Using Chemistry To Recreate the Complexity of the Extracellular Matrix: Guidelines for Supramolecular Hydrogel-Cell Interactions.
J Am Chem Soc. 2024 Jul 3;146(26):17539-17558. doi: 10.1021/jacs.4c02980. Epub 2024 Jun 18.

本文引用的文献

1
Thermal fluctuations of fibres at short time scales.
Soft Matter. 2008 Jun 20;4(7):1438-1442. doi: 10.1039/b802555j.
4
Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water.
Science. 2009 Aug 7;325(5941):741-4. doi: 10.1126/science.1172484.
5
Cross-linked networks of stiff filaments exhibit negative normal stress.
Phys Rev Lett. 2009 Feb 27;102(8):088102. doi: 10.1103/PhysRevLett.102.088102. Epub 2009 Feb 26.
7
Monte Carlo study of multiply crosslinked semiflexible polymer networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Nov;78(5 Pt 1):051801. doi: 10.1103/PhysRevE.78.051801. Epub 2008 Nov 10.
8
Fibrin gels and their clinical and bioengineering applications.
J R Soc Interface. 2009 Jan 6;6(30):1-10. doi: 10.1098/rsif.2008.0327.
9
Length of tandem repeats in fibrin's alphaC region correlates with fiber extensibility.
J Thromb Haemost. 2008 Nov;6(11):1991-3. doi: 10.1111/j.1538-7836.2008.03147.x. Epub 2008 Aug 28.
10
Biophysics. Enigmas of blood clot elasticity.
Science. 2008 Apr 25;320(5875):456-7. doi: 10.1126/science.1154210.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验