State Key Laboratory for Mesoscopic Physics, and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, People's Republic of China.
Nanotechnology. 2010 Jun 18;21(24):245703. doi: 10.1088/0957-4484/21/24/245703. Epub 2010 May 20.
N-doped ZnO nanowires are synthesized at a relatively low growth temperature of 500 degrees C by directly heating zinc powder using NH(3) as the dopant. The incorporation of N into the ZnO nanowires is experimentally confirmed by x-ray photoelectron spectroscopy, Raman spectra and photoluminescence measurements. By combining post annealing experiments after growth with first-principles calculations, the detailed migration mechanism of N and compensation mechanism in N-doped ZnO nanowires are systematically studied. The larger aspect ratio of nanowires favors the formation of oxygen vacancy and out-diffusion of substitutional N (N(O)), making N(O) in ZnO nanowires always compensated by hydrogen interstitials (H(I)). Our results can help to explain the challenge in getting p-type ZnO and shed new light on the possible realization of p-type doping of ZnO in the future.
N 掺杂 ZnO 纳米线在相对较低的生长温度 500°C 下通过直接加热锌粉并用 NH(3)作为掺杂剂合成。X 射线光电子能谱、拉曼光谱和光致发光测量实验证实了 N 掺入 ZnO 纳米线中。通过将生长后的后退火实验与第一性原理计算相结合,系统研究了 N 在 ZnO 纳米线中的详细迁移机制和补偿机制。纳米线较大的纵横比有利于形成氧空位和取代 N(N(O))的外扩散,使 ZnO 纳米线中的 N(O)总是由间隙氢原子(H(I))补偿。我们的结果可以帮助解释获得 p 型 ZnO 的挑战,并为未来实现 ZnO 的 p 型掺杂提供新的思路。