Suppr超能文献

利用高密度微电极阵列记录自发活动海马神经元培养物的实验研究:空间分辨率效应分析

Experimental Investigation on Spontaneously Active Hippocampal Cultures Recorded by Means of High-Density MEAs: Analysis of the Spatial Resolution Effects.

作者信息

Maccione Alessandro, Gandolfo Mauro, Tedesco Mariateresa, Nieus Thierry, Imfeld Kilian, Martinoia Sergio, Berdondini Luca

机构信息

Neuroscience and Brain Technologies, Italian Institute of Technology Genova, Italy.

出版信息

Front Neuroeng. 2010 May 10;3:4. doi: 10.3389/fneng.2010.00004. eCollection 2010.

Abstract

Based on experiments performed with high-resolution Active Pixel Sensor microelectrode arrays (APS-MEAs) coupled with spontaneously active hippocampal cultures, this work investigates the spatial resolution effects of the neuroelectronic interface on the analysis of the recorded electrophysiological signals. The adopted methodology consists, first, in recording the spontaneous activity at the highest spatial resolution (interelectrode separation of 21 mum) from the whole array of 4096 microelectrodes. Then, the full resolution dataset is spatially downsampled in order to evaluate the effects on raster plot representation, array-wide spike rate (AWSR), mean firing rate (MFR) and mean bursting rate (MBR). Furthermore, the effects of the array-to-network relative position are evaluated by shifting a subset of equally spaced electrodes on the entire recorded area. Results highlight that MFR and MBR are particularly influenced by the spatial resolution provided by the neuroelectronic interface. On high-resolution large MEAs, such analysis better represent the time-based parameterization of the network dynamics. Finally, this work suggest interesting capabilities of high-resolution MEAs for spatial-based analysis in dense and low-dense neuronal preparation for investigating signaling at both local and global neuronal circuitries.

摘要

基于使用高分辨率有源像素传感器微电极阵列(APS-MEA)与自发活动的海马体培养物进行的实验,本研究调查了神经电子接口的空间分辨率对记录的电生理信号分析的影响。所采用的方法首先包括以最高空间分辨率(电极间距为21微米)从4096个微电极的整个阵列记录自发活动。然后,对全分辨率数据集进行空间下采样,以评估对光栅图表示、全阵列尖峰率(AWSR)、平均放电率(MFR)和平均爆发率(MBR)的影响。此外,通过在整个记录区域移动等间距电极的子集来评估阵列与网络相对位置的影响。结果表明,MFR和MBR特别受神经电子接口提供的空间分辨率的影响。在高分辨率大型MEA上,此类分析能更好地呈现网络动力学基于时间的参数化。最后,本研究表明高分辨率MEA在密集和低密度神经元制备中的基于空间的分析方面具有有趣的能力,可用于研究局部和全局神经元回路中的信号传导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31bb/2871691/0a0cbe7a8ecb/fneng-03-00004-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验