Suppr超能文献

在脑电图/脑磁图源重建中结合稀疏性和旋转不变性

Combining sparsity and rotational invariance in EEG/MEG source reconstruction.

作者信息

Haufe Stefan, Nikulin Vadim V, Ziehe Andreas, Müller Klaus-Robert, Nolte Guido

机构信息

Machine Learning Group, Department of Computer Science, TU Berlin, Franklinstr. 28/29, D-10587 Berlin, Germany.

出版信息

Neuroimage. 2008 Aug 15;42(2):726-38. doi: 10.1016/j.neuroimage.2008.04.246. Epub 2008 May 3.

Abstract

We introduce Focal Vector Field Reconstruction (FVR), a novel technique for the inverse imaging of vector fields. The method was designed to simultaneously achieve two goals: a) invariance with respect to the orientation of the coordinate system, and b) a preference for sparsity of the solutions and their spatial derivatives. This was achieved by defining the regulating penalty function, which renders the solutions unique, as a global l(1)-norm of local l(2)-norms. We show that the method can be successfully used for solving the EEG inverse problem. In the joint localization of 2-3 simulated dipoles, FVR always reliably recovers the true sources. The competing methods have limitations in distinguishing close sources because their estimates are either too smooth (LORETA, Minimum l(1)-norm) or too scattered (Minimum l(2)-norm). In both noiseless and noisy simulations, FVR has the smallest localization error according to the Earth Mover's Distance (EMD), which is introduced here as a meaningful measure to compare arbitrary source distributions. We also apply the method to the simultaneous localization of left and right somatosensory N20 generators from real EEG recordings. Compared to its peers FVR was the only method that delivered correct location of the source in the somatosensory area of each hemisphere in accordance with neurophysiological prior knowledge.

摘要

我们介绍了焦点向量场重建(FVR),这是一种用于向量场逆成像的新技术。该方法旨在同时实现两个目标:a)对坐标系方向的不变性,以及b)对解及其空间导数稀疏性的偏好。这是通过定义调节惩罚函数来实现的,该函数将解唯一化,作为局部l(2)范数的全局l(1)范数。我们表明该方法可成功用于解决脑电图逆问题。在2 - 3个模拟偶极子的联合定位中,FVR总能可靠地恢复真实源。竞争方法在区分相近源时存在局限性,因为它们的估计要么过于平滑(LORETA,最小l(1)范数),要么过于分散(最小l(2)范数)。在无噪声和有噪声模拟中,根据推土机距离(EMD),FVR具有最小的定位误差,这里引入EMD作为比较任意源分布的有意义度量。我们还将该方法应用于从真实脑电图记录中同时定位左右体感N20发生器。与同类方法相比,FVR是唯一一种根据神经生理学先验知识在每个半球的体感区域中给出源正确位置的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验