Suppr超能文献

关于 RNA 三级结构预测的意义。

On the significance of an RNA tertiary structure prediction.

机构信息

Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA.

出版信息

RNA. 2010 Jul;16(7):1340-9. doi: 10.1261/rna.1837410. Epub 2010 May 24.

Abstract

Tertiary structure prediction is important for understanding structure-function relationships for RNAs whose structures are unknown and for characterizing RNA states recalcitrant to direct analysis. However, it is unknown what root-mean-square deviation (RMSD) corresponds to a statistically significant RNA tertiary structure prediction. We use discrete molecular dynamics to generate RNA-like folds for structures up to 161 nucleotides (nt) that have complex tertiary interactions and then determine the RMSD distribution between these decoys. These distributions are Gaussian-like. The mean RMSD increases with RNA length and is smaller if secondary structure constraints are imposed while generating decoys. The compactness of RNA molecules with true tertiary folds is intermediate between closely packed spheres and a freely jointed chain. We use this scaling relationship to define an expression relating RMSD with the confidence that a structure prediction is better than that expected by chance. This is the prediction significance, and corresponds to a P-value. For a 100-nt RNA, the RMSD of predicted structures should be within 25 A of the accepted structure to reach the P <or= 0.01 level if the secondary structure is predicted de novo and within 14 A if secondary structure information is used as a constraint. This significance approach should be useful for evaluating diverse RNA structure prediction and molecular modeling algorithms.

摘要

三级结构预测对于理解结构未知的 RNA 的结构-功能关系以及描述难以直接分析的 RNA 状态非常重要。然而,目前尚不清楚均方根偏差 (RMSD) 对应于具有统计学意义的 RNA 三级结构预测的程度。我们使用离散分子动力学来生成具有复杂三级相互作用的结构长达 161 个核苷酸 (nt) 的 RNA 样折叠,然后确定这些诱饵之间的 RMSD 分布。这些分布类似于高斯分布。平均 RMSD 随 RNA 长度的增加而增加,如果在生成诱饵时施加二级结构约束,则 RMSD 更小。具有真实三级结构的 RNA 分子的紧凑性介于紧密堆积的球体和自由连接的链之间。我们使用这种缩放关系来定义一个表达式,将 RMSD 与结构预测优于随机预期的置信度联系起来。这是预测显著性,相当于 P 值。对于 100nt 的 RNA,如果二级结构是从头预测的,则预测结构的 RMSD 应在接受结构的 25 A 以内,才能达到 P<0.01 水平,如果使用二级结构信息作为约束,则 RMSD 应在 14 A 以内。这种显著性方法对于评估各种 RNA 结构预测和分子建模算法应该是有用的。

相似文献

1
On the significance of an RNA tertiary structure prediction.
RNA. 2010 Jul;16(7):1340-9. doi: 10.1261/rna.1837410. Epub 2010 May 24.
2
Automated RNA tertiary structure prediction from secondary structure and low-resolution restraints.
J Comput Chem. 2011 Jul 30;32(10):2232-44. doi: 10.1002/jcc.21806. Epub 2011 Apr 21.
3
Automated de novo prediction of native-like RNA tertiary structures.
Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14664-9. doi: 10.1073/pnas.0703836104. Epub 2007 Aug 28.
4
iFoldRNA: three-dimensional RNA structure prediction and folding.
Bioinformatics. 2008 Sep 1;24(17):1951-2. doi: 10.1093/bioinformatics/btn328. Epub 2008 Jun 25.
5
What is the probability of a chance prediction of a protein structure with an rmsd of 6 A?
Fold Des. 1998;3(2):141-7. doi: 10.1016/s1359-0278(98)00019-4.
6
RNA loop structure prediction via bond scaling and relaxation.
Biopolymers. 1996 Jun;38(6):769-79. doi: 10.1002/(sici)1097-0282(199606)38:6<769::aid-bip8>3.0.co;2-p.
7
Secondary structure prediction of interacting RNA molecules.
J Mol Biol. 2005 Feb 4;345(5):987-1001. doi: 10.1016/j.jmb.2004.10.082. Epub 2004 Dec 16.
8
HiRE-RNA: a high resolution coarse-grained energy model for RNA.
J Phys Chem B. 2010 Sep 23;114(37):11957-66. doi: 10.1021/jp102497y.
9
Bridging the gap in RNA structure prediction.
Curr Opin Struct Biol. 2007 Apr;17(2):157-65. doi: 10.1016/j.sbi.2007.03.001. Epub 2007 Mar 23.
10
IsRNA1: Prediction and Blind Screening of RNA 3D Structures.
J Chem Theory Comput. 2021 Mar 9;17(3):1842-1857. doi: 10.1021/acs.jctc.0c01148. Epub 2021 Feb 9.

引用本文的文献

1
Structural Prediction of Coronavirus s2m Kissing Complexes and Extended Duplexes.
ACS Phys Chem Au. 2025 Jun 5;5(4):410-424. doi: 10.1021/acsphyschemau.5c00031. eCollection 2025 Jul 23.
3
Has AlphaFold3 achieved success for RNA?
Acta Crystallogr D Struct Biol. 2025 Feb 1;81(Pt 2):49-62. doi: 10.1107/S2059798325000592. Epub 2025 Jan 27.
4
State-of-the-RNArt: benchmarking current methods for RNA 3D structure prediction.
NAR Genom Bioinform. 2024 May 14;6(2):lqae048. doi: 10.1093/nargab/lqae048. eCollection 2024 Jun.
7
Predicting 3D RNA structure from the nucleotide sequence using Euclidean neural networks.
Biophys J. 2024 Sep 3;123(17):2671-2681. doi: 10.1016/j.bpj.2023.10.011. Epub 2023 Oct 14.
8
Comparative analysis of RNA secondary structure accuracy on predicted RNA 3D models.
PLoS One. 2023 Sep 1;18(9):e0290907. doi: 10.1371/journal.pone.0290907. eCollection 2023.
9
RNA 3D structure modeling by fragment assembly with small-angle X-ray scattering restraints.
Bioinformatics. 2023 Sep 2;39(9). doi: 10.1093/bioinformatics/btad527.
10
RNA Secondary Structure Analysis Using RNAstructure.
Curr Protoc. 2023 Jul;3(7):e846. doi: 10.1002/cpz1.846.

本文引用的文献

1
YUP: A Molecular Simulation Program for Coarse-Grained and Multi-Scaled Models.
J Chem Theory Comput. 2006 May 1;2(3):529-540. doi: 10.1021/ct050323r. Epub 2006 Mar 18.
4
New metrics for comparing and assessing discrepancies between RNA 3D structures and models.
RNA. 2009 Oct;15(10):1875-85. doi: 10.1261/rna.1700409. Epub 2009 Aug 26.
5
Protein structure prediction: when is it useful?
Curr Opin Struct Biol. 2009 Apr;19(2):145-55. doi: 10.1016/j.sbi.2009.02.005. Epub 2009 Mar 25.
6
The structural and functional diversity of metabolite-binding riboswitches.
Annu Rev Biochem. 2009;78:305-34. doi: 10.1146/annurev.biochem.78.070507.135656.
9
Accurate SHAPE-directed RNA structure determination.
Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):97-102. doi: 10.1073/pnas.0806929106. Epub 2008 Dec 24.
10
MS3D structural elucidation of the HIV-1 packaging signal.
Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12248-53. doi: 10.1073/pnas.0800509105. Epub 2008 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验