Departments of Stem Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
Cell Cycle. 2010 Jun 1;9(11):2201-19. doi: 10.4161/cc.9.11.11848.
Cav-1 (-/-) deficient stromal cells are a new genetic model for myofibroblasts and cancer-associated fibroblasts. Using an unbiased informatics analysis of the transcriptional profile of Cav-1 (-/-) deficient mesenchymal stromal cells, we have now identified many of the major signaling pathways that are activated by a loss of Cav-1, under conditions of metabolic restriction (with low glucose media). Our informatics analysis suggests that a loss of Cav-1 induces oxidative stress, which mimics a constitutive pseudo-hypoxic state, leading to (1) aerobic glycolysis and (2) inflammation in the tumor stromal microenvironment. This occurs via the activation of two major transcription factors, namely HIF (aerobic glycolysis) and NFκB (inflammation) in Cav-1 (-/-) stromal fibroblastic cells. Experimentally, we show that Cav-1 deficient stromal cells may possess defective mitochondria, due to the over-production of nitric oxide (NO), resulting in the tyrosine nitration of the mitochondrial respiratory chain components (such as complex I). Elevated levels of nitro-tyrosine were observed both in Cav-1 (-/-) stromal cells, and via acute knock-down with siRNA targeting Cav-1. Finally, metabolic restriction with mitochondrial (complex I) and glycolysis inhibitors was synthetically lethal with a Cav-1 (-/-) deficiency in mice. As such, Cav-1 deficient mice show a dramatically reduced mitochondrial reserve capacity. Thus, a mitochondrial defect in Cav-1 deficient stromal cells could drive oxidative stress, leading to aerobic glycolysis, and inflammation, in the tumor microenvironment. These stromal alterations may underlie the molecular basis of the "reverse Warburg effect", and could provide the key to targeted anti-cancer therapies using metabolic inhibitors. In direct support of these findings, the transcriptional profile of Cav-1 (-/-) stromal cells overlaps significantly with Alzheimer disease, which is characterized by oxidative stress, NO over-production (peroxynitrite formation), inflammation, hypoxia and mitochondrial dysfunction. We conclude that Cav-1 (-/-) deficient mice are a new whole-body animal model for an activated lethal tumor microenvironment, i.e., "tumor stroma" without the tumor. Since Cav-1 (-/-) mice are also an established animal model for profibrotic disease, our current results may have implications for understanding the pathogenesis of scleroderma (systemic sclerosis) and pulmonary fibrosis, which are also related to abnormal mesenchymal stem cell function.
Cav-1(-/-)缺陷基质细胞是肌成纤维细胞和癌相关成纤维细胞的新的遗传模型。通过对 Cav-1(-/-)缺陷间充质基质细胞转录谱的无偏信息学分析,我们现在已经确定了许多主要的信号通路,这些信号通路在代谢受限(低糖培养基)的条件下,由于 Cav-1 的缺失而被激活。我们的信息学分析表明,Cav-1 的缺失会诱导氧化应激,从而模拟一种组成性的假性缺氧状态,导致(1)肿瘤基质微环境中的有氧糖酵解和(2)炎症。这是通过两种主要转录因子的激活来实现的,即 HIF(有氧糖酵解)和 NFκB(炎症)在 Cav-1(-/-)基质成纤维细胞中。实验表明,由于一氧化氮(NO)的过度产生,导致线粒体呼吸链成分(如复合物 I)的酪氨酸硝化,Cav-1 缺陷的基质细胞可能具有缺陷的线粒体。在 Cav-1(-/-)基质细胞中观察到升高的硝基酪氨酸水平,并且通过靶向 Cav-1 的 siRNA 急性敲低也观察到升高的硝基酪氨酸水平。最后,用线粒体(复合物 I)和糖酵解抑制剂进行代谢限制在小鼠中与 Cav-1(-/-)缺陷具有合成致死性。因此,Cav-1 缺陷小鼠显示出明显降低的线粒体储备能力。因此,Cav-1 缺陷基质细胞中的线粒体缺陷可能会导致氧化应激,从而导致肿瘤微环境中的有氧糖酵解和炎症。这些基质改变可能是“反向沃伯格效应”的分子基础,并为使用代谢抑制剂的靶向抗癌治疗提供关键。直接支持这些发现,Cav-1(-/-)基质细胞的转录谱与阿尔茨海默病显著重叠,阿尔茨海默病的特征是氧化应激、NO 过度产生(过氧亚硝酸盐形成)、炎症、缺氧和线粒体功能障碍。我们得出结论,Cav-1(-/-)缺陷小鼠是一种新的全身性动物模型,用于激活致命的肿瘤微环境,即没有肿瘤的“肿瘤基质”。由于 Cav-1(-/-)小鼠也是一种已建立的用于促纤维化疾病的动物模型,我们目前的结果可能对理解硬皮病(系统性硬化症)和肺纤维化的发病机制具有意义,这些疾病也与异常间充质干细胞功能有关。