The Jefferson Stem Cell Biology and Regenerative Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA.
Cancer Biol Ther. 2011 Feb 15;11(4):383-94. doi: 10.4161/cbt.11.4.14101.
We have recently proposed a new model for understanding tumor metabolism, termed: "The Autophagic Tumor Stroma Model of Cancer Metabolism". In this new paradigm, catabolism (autophagy) in the tumor stroma fuels the anabolic growth of aggressive cancer cells. Mechanistically, tumor cells induce autophagy in adjacent cancer-associated fibroblasts via the loss of caveolin-1 (Cav-1), which is sufficient to promote oxidative stress in stromal fibroblasts. To further test this hypothesis, here we created human Cav-1 deficient immortalized fibroblasts using a targeted sh-RNA knock-down approach. Relative to control fibroblasts, Cav-1 deficient fibroblasts dramatically promoted tumor growth in xenograft assays employing an aggressive human breast cancer cell line, namely MDA-MB-231 cells. Co-injection of Cav-1 deficient fibroblasts, with MDA-MB-231 cells, increased both tumor mass and tumor volume by ~4-fold. Immuno-staining with CD31 indicated that this paracrine tumor promoting effect was clearly independent of angiogenesis. Mechanistically, proteomic analysis of these human Cav-1 deficient fibroblasts identified > 40 protein biomarkers that were upregulated, most of which were associated with i) myofibroblast differentiation, or ii) oxidative stress/hypoxia. In direct support of these findings, the tumor promoting effects of Cav-1 deficient fibroblasts could be functionally suppressed (nearly 2-fold) by the recombinant over-expression of SOD2 (superoxide dismutase 2), a known mitochondrial enzyme that de-activates superoxide, thereby reducing mitochondrial oxidative stress. In contrast, cytoplasmic soluble SOD1 had no effect, further highlighting a specific role for mitochondrial oxidative stress in this process. In summary, here we provide new evidence directly supporting a key role for a loss of stromal Cav-1 expression and oxidative stress in cancer-associated fibroblasts, in promoting tumor growth, which is consistent with "The Autophagic Tumor Stroma Model of Cancer". The human Cav-1 deficient fibroblasts that we have generated are a new genetically tractable model system for identifying other suppressors of the cancer-associated fibroblast phenotype, via a genetic "complementation" approach. This has important implications for understanding the pathogenesis of triple negative and basal breasts cancers, as well as tamoxifen-resistance in ER+ breast cancers, which are all associated with a Cav-1 deficient "lethal" tumor micro-environment, driving poor clinical outcome.
我们最近提出了一个新的肿瘤代谢模型,称为“自噬性肿瘤基质模型”。在这个新的范例中,肿瘤基质中的分解代谢(自噬)为侵袭性癌细胞的合成代谢生长提供燃料。从机制上讲,肿瘤细胞通过丧失窖蛋白-1(Cav-1)诱导相邻的癌相关成纤维细胞发生自噬,这足以促进基质成纤维细胞中的氧化应激。为了进一步验证这一假设,我们使用靶向 sh-RNA 敲低方法创建了人源 Cav-1 缺陷的永生化成纤维细胞。与对照成纤维细胞相比,Cav-1 缺陷型成纤维细胞在异种移植实验中显著促进了侵袭性人乳腺癌细胞系 MDA-MB-231 细胞的生长。将 Cav-1 缺陷型成纤维细胞与 MDA-MB-231 细胞共注射,可使肿瘤质量和体积增加约 4 倍。用 CD31 免疫染色表明,这种旁分泌促进肿瘤的作用显然与血管生成无关。从机制上讲,对这些人源 Cav-1 缺陷型成纤维细胞的蛋白质组学分析鉴定出超过 40 种上调的蛋白生物标志物,其中大多数与 i)肌成纤维细胞分化或 ii)氧化应激/缺氧有关。直接支持这些发现的是,Cav-1 缺陷型成纤维细胞的促瘤作用可以通过重组过表达 SOD2(超氧化物歧化酶 2)而被功能性抑制(近 2 倍),SOD2 是一种已知的线粒体酶,可使超氧化物失活,从而减少线粒体氧化应激。相比之下,细胞质可溶性 SOD1 没有作用,进一步突出了线粒体氧化应激在这个过程中的特定作用。总之,我们在这里提供了新的证据,直接支持基质 Cav-1 表达缺失和氧化应激在促进肿瘤生长中的癌相关成纤维细胞中的关键作用,这与“癌症自噬性肿瘤基质模型”一致。我们生成的人源 Cav-1 缺陷型成纤维细胞是一种新的遗传上可操作的模型系统,可通过遗传“互补”方法来鉴定癌相关成纤维细胞表型的其他抑制因子。这对于理解三阴性和基底乳腺癌的发病机制以及 ER+乳腺癌的他莫昔芬耐药性具有重要意义,因为这些都与 Cav-1 缺陷的“致命”肿瘤微环境有关,导致临床预后不良。