Suppr超能文献

利用工程化的呼吸发酵代谢途径,从富含脂肪酸的原料生产生物燃料和生物化学品。

Engineered respiro-fermentative metabolism for the production of biofuels and biochemicals from fatty acid-rich feedstocks.

机构信息

Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX 77005, USA.

出版信息

Appl Environ Microbiol. 2010 Aug;76(15):5067-78. doi: 10.1128/AEM.00046-10. Epub 2010 Jun 4.

Abstract

Although lignocellulosic sugars have been proposed as the primary feedstock for the biological production of renewable fuels and chemicals, the availability of fatty acid (FA)-rich feedstocks and recent progress in the development of oil-accumulating organisms make FAs an attractive alternative. In addition to their abundance, the metabolism of FAs is very efficient and could support product yields significantly higher than those obtained from lignocellulosic sugars. However, FAs are metabolized only under respiratory conditions, a metabolic mode that does not support the synthesis of fermentation products. In the work reported here we engineered several native and heterologous fermentative pathways to function in Escherichia coli under aerobic conditions, thus creating a respiro-fermentative metabolic mode that enables the efficient synthesis of fuels and chemicals from FAs. Representative biofuels (ethanol and butanol) and biochemicals (acetate, acetone, isopropanol, succinate, and propionate) were chosen as target products to illustrate the feasibility of the proposed platform. The yields of ethanol, acetate, and acetone in the engineered strains exceeded those reported in the literature for their production from sugars, and in the cases of ethanol and acetate they also surpassed the maximum theoretical values that can be achieved from lignocellulosic sugars. Butanol was produced at yields and titers that were between 2- and 3-fold higher than those reported for its production from sugars in previously engineered microorganisms. Moreover, our work demonstrates production of propionate, a compound previously thought to be synthesized only by propionibacteria, in E. coli. Finally, the synthesis of isopropanol and succinate was also demonstrated. The work reported here represents the first effort toward engineering microorganisms for the conversion of FAs to the aforementioned products.

摘要

尽管木质纤维素糖已被提议作为生物生产可再生燃料和化学品的主要原料,但脂肪酸 (FA) 丰富的原料的可用性和在产油生物积累方面的最新进展使得 FA 成为一种有吸引力的替代品。除了它们的丰度之外,脂肪酸的代谢非常高效,可以支持比从木质纤维素糖获得的产品产量更高的产品产量。然而,FA 仅在呼吸条件下被代谢,这种代谢模式不支持发酵产物的合成。在本报告中,我们设计了几种天然和异源发酵途径,使其在好氧条件下在大肠杆菌中发挥作用,从而创建了一种呼吸发酵代谢模式,能够从 FA 高效合成燃料和化学品。选择代表性的生物燃料(乙醇和丁醇)和生物化学物质(乙酸、丙酮、异丙醇、琥珀酸和丙酸)作为目标产物,以说明所提出的平台的可行性。在工程菌株中,乙醇、乙酸和丙酮的产率超过了从糖生产的文献报道值,并且在乙醇和乙酸的情况下,它们也超过了从木质纤维素糖可达到的最大理论值。丁醇的产率和滴度比以前工程化微生物中从糖生产的报告值高 2-3 倍。此外,我们的工作证明了丙酸的合成,丙酸以前被认为只能由丙酸杆菌合成,在大肠杆菌中合成。最后,还证明了异丙醇和琥珀酸的合成。本报告中的工作代表了首次努力设计微生物将 FA 转化为上述产品。

相似文献

1
Engineered respiro-fermentative metabolism for the production of biofuels and biochemicals from fatty acid-rich feedstocks.
Appl Environ Microbiol. 2010 Aug;76(15):5067-78. doi: 10.1128/AEM.00046-10. Epub 2010 Jun 4.
3
Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology.
Appl Microbiol Biotechnol. 2010 Mar;86(2):419-34. doi: 10.1007/s00253-010-2446-1. Epub 2010 Feb 9.
4
Microbial production of fatty acid-derived fuels and chemicals.
Curr Opin Biotechnol. 2013 Dec;24(6):1044-53. doi: 10.1016/j.copbio.2013.02.028. Epub 2013 Mar 28.
5
l-Rhamnose Metabolism in Clostridium beijerinckii Strain DSM 6423.
Appl Environ Microbiol. 2019 Feb 20;85(5). doi: 10.1128/AEM.02656-18. Print 2019 Mar 1.
6
Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology.
J Biomed Biotechnol. 2010;2010:761042. doi: 10.1155/2010/761042. Epub 2010 Apr 6.
7
Production of ethanol from thin stillage by metabolically engineered Escherichia coli.
Biotechnol Lett. 2010 Mar;32(3):405-11. doi: 10.1007/s10529-009-0159-2. Epub 2009 Nov 7.
8
Metabolic engineering for the production of butanol, a potential advanced biofuel, from renewable resources.
Biochem Soc Trans. 2020 Oct 30;48(5):2283-2293. doi: 10.1042/BST20200603.
9
Metabolic engineering of microbial pathways for advanced biofuels production.
Curr Opin Biotechnol. 2011 Dec;22(6):775-83. doi: 10.1016/j.copbio.2011.04.024. Epub 2011 May 26.
10
Fatty acid from the renewable sources: a promising feedstock for the production of biofuels and biobased chemicals.
Biotechnol Adv. 2014 Mar-Apr;32(2):382-9. doi: 10.1016/j.biotechadv.2013.12.003. Epub 2013 Dec 19.

引用本文的文献

1
Production of succinate with two CO fixation reactions from fatty acids in Cupriavidus necator H16.
Microb Cell Fact. 2024 Jul 5;23(1):194. doi: 10.1186/s12934-024-02470-6.
2
as an Alternative and Valuable Source of Nutritional and Bioactive Compounds for Humans.
Molecules. 2022 Apr 1;27(7):2300. doi: 10.3390/molecules27072300.
3
Conversion of no/low value waste frying oils into biodiesel and polyhydroxyalkanoates.
Sci Rep. 2019 Sep 24;9(1):13751. doi: 10.1038/s41598-019-50278-x.
4
6
Engineering redox homeostasis to develop efficient alcohol-producing microbial cell factories.
Microb Cell Fact. 2017 Jun 24;16(1):115. doi: 10.1186/s12934-017-0728-3.
8
Microbial engineering for aldehyde synthesis.
Appl Environ Microbiol. 2015 Mar;81(6):1892-901. doi: 10.1128/AEM.03319-14. Epub 2015 Jan 9.
9
Escherichia coli redox mutants as microbial cell factories for the synthesis of reduced biochemicals.
Comput Struct Biotechnol J. 2013 Jan 18;3:e201210019. doi: 10.5936/csbj.201210019. eCollection 2012.
10
Engineering the Saccharomyces cerevisiae β-oxidation pathway to increase medium chain fatty acid production as potential biofuel.
PLoS One. 2014 Jan 21;9(1):e84853. doi: 10.1371/journal.pone.0084853. eCollection 2014.

本文引用的文献

1
Fermentative Pyruvate and Acetyl-Coenzyme A Metabolism.
EcoSal Plus. 2004 Dec;1(1). doi: 10.1128/ecosalplus.3.5.3.
3
Biofuels. ExxonMobil fuels Venter's efforts to run vehicles on algae-based oil.
Science. 2009 Jul 24;325(5939):379. doi: 10.1126/science.325_379a.
4
Engineering alternative butanol production platforms in heterologous bacteria.
Metab Eng. 2009 Jul-Sep;11(4-5):262-73. doi: 10.1016/j.ymben.2009.05.003. Epub 2009 May 21.
5
New microbial fuels: a biotech perspective.
Curr Opin Microbiol. 2009 Jun;12(3):274-81. doi: 10.1016/j.mib.2009.04.004. Epub 2009 May 18.
6
Plant oils as feedstock alternatives to petroleum - A short survey of potential oil crop platforms.
Biochimie. 2009 Jun;91(6):665-70. doi: 10.1016/j.biochi.2009.03.021. Epub 2009 Apr 16.
7
Biorefinery: Toward an industrial metabolism.
Biochimie. 2009 Jun;91(6):659-64. doi: 10.1016/j.biochi.2009.03.015. Epub 2009 Mar 28.
8
Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli.
Biotechnol Bioeng. 2009 May 1;103(1):148-61. doi: 10.1002/bit.22246.
9
Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol.
Microb Cell Fact. 2008 Dec 3;7:36. doi: 10.1186/1475-2859-7-36.
10
Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products.
Metab Eng. 2008 Nov;10(6):340-51. doi: 10.1016/j.ymben.2008.08.005. Epub 2008 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验