Suppr超能文献

一种用于病灶边界检测的软动力学数据结构。

A soft kinetic data structure for lesion border detection.

机构信息

Department of Computer Science, University of Central Arkansas, Conway, AR 72035, USA.

出版信息

Bioinformatics. 2010 Jun 15;26(12):i21-8. doi: 10.1093/bioinformatics/btq178.

Abstract

MOTIVATION

The medical imaging and image processing techniques, ranging from microscopic to macroscopic, has become one of the main components of diagnostic procedures to assist dermatologists in their medical decision-making processes. Computer-aided segmentation and border detection on dermoscopic images is one of the core components of diagnostic procedures and therapeutic interventions for skin cancer. Automated assessment tools for dermoscopic images have become an important research field mainly because of inter- and intra-observer variations in human interpretations. In this study, a novel approach-graph spanner-for automatic border detection in dermoscopic images is proposed. In this approach, a proximity graph representation of dermoscopic images in order to detect regions and borders in skin lesion is presented.

RESULTS

Graph spanner approach is examined on a set of 100 dermoscopic images whose manually drawn borders by a dermatologist are used as the ground truth. Error rates, false positives and false negatives along with true positives and true negatives are quantified by digitally comparing results with manually determined borders from a dermatologist. The results show that the highest precision and recall rates obtained to determine lesion boundaries are 100%. However, accuracy of assessment averages out at 97.72% and borders errors' mean is 2.28% for whole dataset.

摘要

动机

从微观到宏观,医学成像和图像处理技术已成为诊断程序的主要组成部分之一,以帮助皮肤科医生做出医学决策。皮肤镜图像的计算机辅助分割和边界检测是皮肤癌诊断程序和治疗干预的核心组成部分之一。皮肤镜图像的自动评估工具已成为一个重要的研究领域,主要是因为人类解释存在着观察者间和观察者内的差异。在这项研究中,提出了一种新的方法——图跨度器,用于自动检测皮肤镜图像的边界。在该方法中,提出了一种皮肤镜图像的邻近图表示方法,以便检测皮肤病变中的区域和边界。

结果

图跨度器方法在一组 100 张皮肤镜图像上进行了检查,这些图像的边界是由皮肤科医生手动绘制的,作为真实边界。通过与皮肤科医生手动确定的边界进行数字比较,量化了错误率、假阳性和假阴性以及真阳性和真阴性。结果表明,确定病变边界的最高精度和召回率达到 100%。然而,整个数据集的评估准确性平均为 97.72%,边界误差的平均值为 2.28%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验