Suppr超能文献

基于改进卷积神经网络的皮肤损伤分割。

Skin Lesion Segmentation with Improved Convolutional Neural Network.

机构信息

Technology Faculty, Electrical and Electronics Engineering, Amasya University, Amasya, Turkey.

Engineering and Natural Science Faculty, Electrical and Electronics Engineering, Konya Technical University, Konya, Turkey.

出版信息

J Digit Imaging. 2020 Aug;33(4):958-970. doi: 10.1007/s10278-020-00343-z.

Abstract

Recently, the incidence of skin cancer has increased considerably and is seriously threatening human health. Automatic detection of this disease, where early detection is critical to human life, is quite challenging. Factors such as undesirable residues (hair, ruler markers), indistinct boundaries, variable contrast, shape differences, and color differences in the skin lesion images make automatic analysis quite difficult. To overcome these challenges, a highly effective segmentation method based on a fully convolutional network (FCN) is presented in this paper. The proposed improved FCN (iFCN) architecture is used for the segmentation of full-resolution skin lesion images without any pre- or post-processing. It is to support the residual structure of the FCN architecture with spatial information. This situation, which creates a more advanced residual system, enables more precise detection of details on the edges of the lesion, and an analysis independent of skin color can be performed. It offers two contributions: determining the center of the lesion and clarifying the edge details despite the undesirable effects. Two publicly available datasets, the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 Challenge and PH2 datasets, are used to evaluate the performance of the iFCN method. The mean Jaccard index is 78.34%, the mean Dice score is 88.64%, and the mean accuracy value is 95.30% for the proposed method for the ISBI 2017 test dataset. Furthermore, the mean Jaccard index is 87.1%, the mean Dice score is 93.02%, and the mean accuracy value is 96.92% for the proposed method for the PH2 test dataset.

摘要

近年来,皮肤癌的发病率显著增加,严重威胁着人类的健康。这种疾病早期发现至关重要,但自动检测却极具挑战性。皮肤病变图像存在不理想的残留物(毛发、标尺标记)、不清晰的边界、可变的对比度、形状差异和颜色差异等因素,使得自动分析变得非常困难。为了克服这些挑战,本文提出了一种基于全卷积网络(FCN)的高效分割方法。所提出的改进 FCN(iFCN)架构用于对未经任何预处理或后处理的全分辨率皮肤病变图像进行分割。它支持 FCN 架构的残差结构,使用空间信息。这种情况创建了一个更先进的残差系统,能够更精确地检测病变边缘的细节,并且可以进行独立于肤色的分析。它有两个贡献:确定病变的中心,并在存在不理想影响的情况下澄清边缘细节。两个公开可用的数据集,即 IEEE 国际生物医学成像研讨会(ISBI)2017 挑战赛和 PH2 数据集,用于评估 iFCN 方法的性能。对于 ISBI 2017 测试数据集,所提出方法的平均 Jaccard 指数为 78.34%,平均 Dice 分数为 88.64%,平均准确率为 95.30%。此外,对于 PH2 测试数据集,所提出方法的平均 Jaccard 指数为 87.1%,平均 Dice 分数为 93.02%,平均准确率为 96.92%。

相似文献

4
Skin lesion segmentation using high-resolution convolutional neural network.基于高分辨率卷积神经网络的皮肤损伤分割。
Comput Methods Programs Biomed. 2020 Apr;186:105241. doi: 10.1016/j.cmpb.2019.105241. Epub 2019 Dec 4.
5
Automatic skin lesion segmentation based on FC-DPN.基于全卷积双路径网络的皮肤病变自动分割
Comput Biol Med. 2020 Aug;123:103762. doi: 10.1016/j.compbiomed.2020.103762. Epub 2020 Jul 17.
8
Dermoscopic Image Segmentation via Multistage Fully Convolutional Networks.基于多级全卷积网络的皮肤镜图像分割
IEEE Trans Biomed Eng. 2017 Sep;64(9):2065-2074. doi: 10.1109/TBME.2017.2712771. Epub 2017 Jun 7.
10
Hyper-fusion network for semi-automatic segmentation of skin lesions.超融合网络用于皮肤病变的半自动分割。
Med Image Anal. 2022 Feb;76:102334. doi: 10.1016/j.media.2021.102334. Epub 2021 Dec 11.

引用本文的文献

9
Robust fusion for skin lesion segmentation of dermoscopic images.用于皮肤镜图像皮肤病变分割的稳健融合
Front Bioeng Biotechnol. 2023 Mar 20;11:1057866. doi: 10.3389/fbioe.2023.1057866. eCollection 2023.
10
Skin Lesion Segmentation in Dermoscopic Images with Noisy Data.带噪声数据的皮肤镜图像皮肤损伤分割。
J Digit Imaging. 2023 Aug;36(4):1712-1722. doi: 10.1007/s10278-023-00819-8. Epub 2023 Apr 5.

本文引用的文献

1
Cancer statistics, 2019.癌症统计数据,2019 年。
CA Cancer J Clin. 2019 Jan;69(1):7-34. doi: 10.3322/caac.21551. Epub 2019 Jan 8.
3
Fully Convolutional Networks for Semantic Segmentation.全卷积网络用于语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
4
Early detection of melanoma: reviewing the ABCDEs.早期黑色素瘤检测:复习 ABCDE 法则。
J Am Acad Dermatol. 2015 Apr;72(4):717-23. doi: 10.1016/j.jaad.2015.01.025. Epub 2015 Feb 16.
8
Segmentation of dermoscopy images using wavelet networks.基于小波网络的皮肤镜图像分割。
IEEE Trans Biomed Eng. 2013 Apr;60(4):1134-41. doi: 10.1109/TBME.2012.2227478. Epub 2012 Nov 15.
10
Skin tumor area extraction using an improved dynamic programming approach.使用改进的动态规划方法进行皮肤肿瘤区域提取。
Skin Res Technol. 2012 May;18(2):133-42. doi: 10.1111/j.1600-0846.2011.00544.x. Epub 2011 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验