Suppr超能文献

尽可能刚性的大 ssTEM 数据集拼接和连续切片配准。

As-rigid-as-possible mosaicking and serial section registration of large ssTEM datasets.

机构信息

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.

出版信息

Bioinformatics. 2010 Jun 15;26(12):i57-63. doi: 10.1093/bioinformatics/btq219.

Abstract

MOTIVATION

Tiled serial section Transmission Electron Microscopy (ssTEM) is increasingly used to describe high-resolution anatomy of large biological specimens. In particular in neurobiology, TEM is indispensable for analysis of synaptic connectivity in the brain. Registration of ssTEM image mosaics has to recover the 3D continuity and geometrical properties of the specimen in presence of various distortions that are applied to the tissue during sectioning, staining and imaging. These include staining artifacts, mechanical deformation, missing sections and the fact that structures may appear dissimilar in consecutive sections.

RESULTS

We developed a fully automatic, non-rigid but as-rigid-as-possible registration method for large tiled serial section microscopy stacks. We use the Scale Invariant Feature Transform (SIFT) to identify corresponding landmarks within and across sections and globally optimize the pose of all tiles in terms of least square displacement of these landmark correspondences. We evaluate the precision of the approach using an artificially generated dataset designed to mimic the properties of TEM data. We demonstrate the performance of our method by registering an ssTEM dataset of the first instar larval brain of Drosophila melanogaster consisting of 6885 images.

AVAILABILITY

This method is implemented as part of the open source software TrakEM2 (http://www.ini.uzh.ch/~acardona/trakem2.html) and distributed through the Fiji project (http://pacific.mpi-cbg.de).

摘要

动机

平铺式连续切片透射电子显微镜(ssTEM)越来越多地用于描述大型生物样本的高分辨率结构。特别是在神经生物学中,TEM 对于分析大脑中的突触连接是不可或缺的。ssTEM 图像镶嵌的配准必须恢复标本的 3D 连续性和几何特性,同时存在各种在切片、染色和成像过程中对组织施加的变形。这些包括染色伪影、机械变形、缺失的切片以及结构在连续切片中可能看起来不同的事实。

结果

我们开发了一种用于大型平铺式连续切片显微镜堆栈的全自动、非刚性但尽可能刚性的配准方法。我们使用尺度不变特征变换(SIFT)来识别截面内和截面之间的相应地标,并根据这些地标对应物的最小二乘位移来全局优化所有瓦片的姿态。我们使用设计用于模拟 TEM 数据特性的人工生成数据集来评估该方法的精度。我们通过注册 Drosophila melanogaster 幼虫第一龄大脑的 ssTEM 数据集来演示我们方法的性能,该数据集由 6885 张图像组成。

可用性

该方法作为开源软件 TrakEM2(http://www.ini.uzh.ch/~acardona/trakem2.html)的一部分实现,并通过 Fiji 项目(http://pacific.mpi-cbg.de)分发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/103a/2881403/3faf95967495/btq219f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验